File size: 25,924 Bytes
e2efe2b 933ca80 e2efe2b f07bfd7 e2efe2b f07bfd7 e2efe2b 7e4697d e2efe2b f07bfd7 e2efe2b f07bfd7 e2efe2b f07bfd7 933ca80 f07bfd7 933ca80 e2efe2b f07bfd7 933ca80 f07bfd7 e2efe2b 933ca80 f07bfd7 e2efe2b 933ca80 e2efe2b 933ca80 e2efe2b 933ca80 e2efe2b 933ca80 f07bfd7 e2efe2b 22bf20f e2efe2b 22bf20f e2efe2b 22bf20f e2efe2b 22bf20f 933ca80 e2efe2b 933ca80 e2efe2b 933ca80 e2efe2b 933ca80 e2efe2b 933ca80 e2efe2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 |
from typing import Dict, List, Optional, Union
import json
import os
import pickle
import random
import torch
import numpy as np
import optuna
from sklearn.metrics import accuracy_score, f1_score
from sklearn.preprocessing import LabelEncoder
from torch.utils.tensorboard import SummaryWriter
from transformers import AutoConfig, BertConfig, BertModel, get_linear_schedule_with_warmup, get_cosine_schedule_with_warmup
from torch.optim import AdamW
import pandas as pd
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.multiprocessing as mp
from contextlib import contextmanager
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def initialize_wandb(config):
if config.get("use_wandb", False):
import wandb
wandb.init(
project=config.get("wandb_project", "geneformer_multitask"),
name=config.get("run_name", "experiment"),
config=config,
reinit=True,
)
def create_model(config, num_labels_list, device, is_distributed=False, local_rank=0):
"""Create and initialize the model based on configuration."""
from .model import GeneformerMultiTask
model = GeneformerMultiTask(
config["pretrained_path"],
num_labels_list,
dropout_rate=config.get("dropout_rate", 0.1),
use_task_weights=config.get("use_task_weights", False),
task_weights=config.get("task_weights", None),
max_layers_to_freeze=config.get("max_layers_to_freeze", 0),
use_attention_pooling=config.get("use_attention_pooling", False),
)
# Move model to device
model.to(device)
if is_distributed:
model = DDP(model, device_ids=[local_rank], output_device=local_rank, find_unused_parameters=True)
return model
def setup_optimizer_and_scheduler(model, config, total_steps):
"""Set up optimizer and learning rate scheduler."""
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters()
if not any(nd in n for nd in no_decay) and p.requires_grad],
"weight_decay": config["weight_decay"],
},
{
"params": [p for n, p in model.named_parameters()
if any(nd in n for nd in no_decay) and p.requires_grad],
"weight_decay": 0.0,
},
]
optimizer = AdamW(
optimizer_grouped_parameters,
lr=config["learning_rate"],
eps=config.get("adam_epsilon", 1e-8)
)
# Prepare scheduler
warmup_steps = int(total_steps * config["warmup_ratio"])
scheduler_map = {
"linear": get_linear_schedule_with_warmup,
"cosine": get_cosine_schedule_with_warmup
}
scheduler_fn = scheduler_map.get(config["lr_scheduler_type"])
if not scheduler_fn:
raise ValueError(f"Unsupported scheduler type: {config['lr_scheduler_type']}")
scheduler = scheduler_fn(optimizer, num_warmup_steps=warmup_steps, num_training_steps=total_steps)
return optimizer, scheduler
def save_model(model, model_save_directory):
"""Save model weights and configuration."""
os.makedirs(model_save_directory, exist_ok=True)
# Handle DDP model
if isinstance(model, DDP):
model_to_save = model.module
else:
model_to_save = model
model_state_dict = model_to_save.state_dict()
model_save_path = os.path.join(model_save_directory, "pytorch_model.bin")
torch.save(model_state_dict, model_save_path)
# Save the model configuration
model_to_save.config.to_json_file(os.path.join(model_save_directory, "config.json"))
print(f"Model and configuration saved to {model_save_directory}")
def save_hyperparameters(model_save_directory, hyperparams):
"""Save hyperparameters to a JSON file."""
hyperparams_path = os.path.join(model_save_directory, "hyperparameters.json")
with open(hyperparams_path, "w") as f:
json.dump(hyperparams, f)
print(f"Hyperparameters saved to {hyperparams_path}")
def calculate_metrics(labels=None, preds=None, task_data=None, metric_type="task_specific", return_format="dict"):
if metric_type == "single":
# Calculate metrics for a single task
if labels is None or preds is None:
raise ValueError("Labels and predictions must be provided for single task metrics")
task_name = None
if isinstance(labels, dict) and len(labels) == 1:
task_name = list(labels.keys())[0]
labels = labels[task_name]
preds = preds[task_name]
f1 = f1_score(labels, preds, average="macro")
accuracy = accuracy_score(labels, preds)
if return_format == "tuple":
return f1, accuracy
result = {"f1": f1, "accuracy": accuracy}
if task_name:
return {task_name: result}
return result
elif metric_type == "task_specific":
# Calculate metrics for multiple tasks
if task_data:
result = {}
for task_name, (task_labels, task_preds) in task_data.items():
f1 = f1_score(task_labels, task_preds, average="macro")
accuracy = accuracy_score(task_labels, task_preds)
result[task_name] = {"f1": f1, "accuracy": accuracy}
return result
elif isinstance(labels, dict) and isinstance(preds, dict):
result = {}
for task_name in labels:
if task_name in preds:
f1 = f1_score(labels[task_name], preds[task_name], average="macro")
accuracy = accuracy_score(labels[task_name], preds[task_name])
result[task_name] = {"f1": f1, "accuracy": accuracy}
return result
else:
raise ValueError("For task_specific metrics, either task_data or labels and preds dictionaries must be provided")
elif metric_type == "combined":
# Calculate combined metrics across all tasks
if labels is None or preds is None:
raise ValueError("Labels and predictions must be provided for combined metrics")
# Handle label encoding for non-numeric labels
if not all(isinstance(x, (int, float)) for x in labels + preds):
le = LabelEncoder()
le.fit(labels + preds)
labels = le.transform(labels)
preds = le.transform(preds)
f1 = f1_score(labels, preds, average="macro")
accuracy = accuracy_score(labels, preds)
if return_format == "tuple":
return f1, accuracy
return {"f1": f1, "accuracy": accuracy}
else:
raise ValueError(f"Unknown metric_type: {metric_type}")
def get_layer_freeze_range(pretrained_path):
if not pretrained_path:
return {"min": 0, "max": 0}
config = AutoConfig.from_pretrained(pretrained_path)
total_layers = config.num_hidden_layers
return {"min": 0, "max": total_layers - 1}
def prepare_training_environment(config):
"""
Prepare the training environment by setting seed and loading data.
Returns:
tuple: (device, train_loader, val_loader, train_cell_id_mapping,
val_cell_id_mapping, num_labels_list)
"""
from .data import prepare_data_loaders
# Set seed for reproducibility
set_seed(config["seed"])
# Set up device - for non-distributed training
if not config.get("distributed_training", False):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
else:
# For distributed training, device will be set per process
device = None
# Load data using the streaming dataset
data = prepare_data_loaders(config)
# For distributed training, we'll set up samplers later in the distributed worker
# Don't create DistributedSampler here as process group isn't initialized yet
return (
device,
data["train_loader"],
data["val_loader"],
data["train_cell_mapping"],
data["val_cell_mapping"],
data["num_labels_list"],
)
# Optuna hyperparameter optimization utilities
def save_trial_callback(study, trial, trials_result_path):
"""
Callback to save Optuna trial results to a file.
Args:
study: Optuna study object
trial: Current trial object
trials_result_path: Path to save trial results
"""
with open(trials_result_path, "a") as f:
f.write(
f"Trial {trial.number}: Value (F1 Macro): {trial.value}, Params: {trial.params}\n"
)
def create_optuna_study(objective, n_trials: int, trials_result_path: str, tensorboard_log_dir: str) -> optuna.Study:
"""Create and run an Optuna study with TensorBoard logging."""
from optuna.integration import TensorBoardCallback
study = optuna.create_study(direction="maximize")
study.optimize(
objective,
n_trials=n_trials,
callbacks=[
lambda study, trial: save_trial_callback(study, trial, trials_result_path),
TensorBoardCallback(dirname=tensorboard_log_dir, metric_name="F1 Macro")
]
)
return study
@contextmanager
def setup_logging(config):
run_name = config.get("run_name", "manual_run")
log_dir = os.path.join(config["tensorboard_log_dir"], run_name)
writer = SummaryWriter(log_dir=log_dir)
try:
yield writer
finally:
writer.close()
def log_training_step(loss, writer, config, epoch, steps_per_epoch, batch_idx):
"""Log training step metrics to TensorBoard and optionally W&B."""
writer.add_scalar(
"Training Loss", loss, epoch * steps_per_epoch + batch_idx
)
if config.get("use_wandb", False):
import wandb
wandb.log({"Training Loss": loss})
def log_validation_metrics(task_metrics, val_loss, config, writer, epoch):
"""Log validation metrics to console, TensorBoard, and optionally W&B."""
for task_name, metrics in task_metrics.items():
print(
f"{task_name} - Validation F1 Macro: {metrics['f1']:.4f}, Validation Accuracy: {metrics['accuracy']:.4f}"
)
if config.get("use_wandb", False):
import wandb
wandb.log(
{
f"{task_name} Validation F1 Macro": metrics["f1"],
f"{task_name} Validation Accuracy": metrics["accuracy"],
}
)
writer.add_scalar("Validation Loss", val_loss, epoch)
for task_name, metrics in task_metrics.items():
writer.add_scalar(f"{task_name} - Validation F1 Macro", metrics["f1"], epoch)
writer.add_scalar(
f"{task_name} - Validation Accuracy", metrics["accuracy"], epoch
)
def load_label_mappings(results_dir: str, task_names: List[str]) -> Dict[str, Dict]:
"""Load or initialize task label mappings."""
label_mappings_path = os.path.join(results_dir, "task_label_mappings_val.pkl")
if os.path.exists(label_mappings_path):
with open(label_mappings_path, 'rb') as f:
return pickle.load(f)
return {task_name: {} for task_name in task_names}
def create_prediction_row(sample_idx: int, val_cell_indices: Dict, task_true_labels: Dict,
task_pred_labels: Dict, task_pred_probs: Dict, task_names: List[str],
inverted_mappings: Dict, val_cell_mapping: Dict) -> Dict:
"""Create a row for validation predictions."""
batch_cell_idx = val_cell_indices.get(sample_idx)
cell_id = val_cell_mapping.get(batch_cell_idx, f"unknown_cell_{sample_idx}") if batch_cell_idx is not None else f"unknown_cell_{sample_idx}"
row = {"Cell ID": cell_id}
for task_name in task_names:
if task_name in task_true_labels and sample_idx < len(task_true_labels[task_name]):
true_idx = task_true_labels[task_name][sample_idx]
pred_idx = task_pred_labels[task_name][sample_idx]
true_label = inverted_mappings.get(task_name, {}).get(true_idx, f"Unknown-{true_idx}")
pred_label = inverted_mappings.get(task_name, {}).get(pred_idx, f"Unknown-{pred_idx}")
row.update({
f"{task_name}_true_idx": true_idx,
f"{task_name}_pred_idx": pred_idx,
f"{task_name}_true_label": true_label,
f"{task_name}_pred_label": pred_label
})
if task_name in task_pred_probs and sample_idx < len(task_pred_probs[task_name]):
probs = task_pred_probs[task_name][sample_idx]
if isinstance(probs, (list, np.ndarray)) or (hasattr(probs, '__iter__') and not isinstance(probs, str)):
prob_list = list(probs) if not isinstance(probs, list) else probs
row[f"{task_name}_all_probs"] = ",".join(map(str, prob_list))
for class_idx, prob in enumerate(prob_list):
class_label = inverted_mappings.get(task_name, {}).get(class_idx, f"Unknown-{class_idx}")
row[f"{task_name}_prob_{class_label}"] = prob
else:
row[f"{task_name}_all_probs"] = str(probs)
return row
def save_validation_predictions(
val_cell_indices,
task_true_labels,
task_pred_labels,
task_pred_probs,
config,
trial_number=None,
):
"""Save validation predictions to a CSV file with class labels and probabilities."""
os.makedirs(config["results_dir"], exist_ok=True)
if trial_number is not None:
os.makedirs(os.path.join(config["results_dir"], f"trial_{trial_number}"), exist_ok=True)
val_preds_file = os.path.join(config["results_dir"], f"trial_{trial_number}/val_preds.csv")
else:
val_preds_file = os.path.join(config["results_dir"], "manual_run_val_preds.csv")
if not val_cell_indices or not task_true_labels:
pd.DataFrame().to_csv(val_preds_file, index=False)
return
try:
label_mappings = load_label_mappings(config["results_dir"], config["task_names"])
inverted_mappings = {task: {idx: label for label, idx in mapping.items()} for task, mapping in label_mappings.items()}
val_cell_mapping = config.get("val_cell_mapping", {})
# Determine maximum number of samples
max_samples = max(
[len(val_cell_indices)] +
[len(task_true_labels[task]) for task in task_true_labels]
)
rows = [
create_prediction_row(
sample_idx, val_cell_indices, task_true_labels, task_pred_labels,
task_pred_probs, config["task_names"], inverted_mappings, val_cell_mapping
)
for sample_idx in range(max_samples)
]
pd.DataFrame(rows).to_csv(val_preds_file, index=False)
except Exception as e:
pd.DataFrame([{"Error": str(e)}]).to_csv(val_preds_file, index=False)
def setup_distributed_environment(rank, world_size, config):
"""
Setup the distributed training environment.
Args:
rank (int): The rank of the current process
world_size (int): Total number of processes
config (dict): Configuration dictionary
"""
os.environ['MASTER_ADDR'] = config.get('master_addr', 'localhost')
os.environ['MASTER_PORT'] = config.get('master_port', '12355')
# Initialize the process group
dist.init_process_group(
backend='nccl',
init_method='env://',
world_size=world_size,
rank=rank
)
# Set the device for this process
torch.cuda.set_device(rank)
def train_distributed(trainer_class, config, train_loader, val_loader, train_cell_id_mapping, val_cell_id_mapping, num_labels_list, trial_number=None, shared_dict=None):
"""Run distributed training across multiple GPUs with fallback to single GPU."""
world_size = torch.cuda.device_count()
if world_size <= 1:
print("Distributed training requested but only one GPU found. Falling back to single GPU training.")
config["distributed_training"] = False
trainer = trainer_class(config)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
trainer.device = device
train_loader, val_loader, train_cell_id_mapping, val_cell_id_mapping, num_labels_list = trainer.setup(
train_loader, val_loader, train_cell_id_mapping, val_cell_id_mapping, num_labels_list
)
val_loss, model = trainer.train(
train_loader, val_loader, train_cell_id_mapping, val_cell_id_mapping, num_labels_list
)
model_save_directory = os.path.join(config["model_save_path"], "GeneformerMultiTask")
save_model(model, model_save_directory)
save_hyperparameters(model_save_directory, {
**get_config_value(config, "manual_hyperparameters", {}),
"dropout_rate": config["dropout_rate"],
"use_task_weights": config["use_task_weights"],
"task_weights": config["task_weights"],
"max_layers_to_freeze": config["max_layers_to_freeze"],
"use_attention_pooling": config["use_attention_pooling"],
})
if shared_dict is not None:
shared_dict['val_loss'] = val_loss
task_true_labels, task_pred_labels, task_pred_probs = collect_validation_predictions(model, val_loader, device, config)
shared_dict['task_metrics'] = calculate_metrics(labels=task_true_labels, preds=task_pred_labels, metric_type="task_specific")
shared_dict['model_state_dict'] = {k: v.cpu() for k, v in model.state_dict().items()}
return val_loss, model
print(f"Using distributed training with {world_size} GPUs")
mp.spawn(
_distributed_worker,
args=(world_size, trainer_class, config, train_loader, val_loader, train_cell_id_mapping, val_cell_id_mapping, num_labels_list, trial_number, shared_dict),
nprocs=world_size,
join=True
)
if trial_number is None and shared_dict is None:
model_save_directory = os.path.join(config["model_save_path"], "GeneformerMultiTask")
model_path = os.path.join(model_save_directory, "pytorch_model.bin")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = create_model(config, num_labels_list, device)
model.load_state_dict(torch.load(model_path))
return 0.0, model
return None
def _distributed_worker(rank, world_size, trainer_class, config, train_loader, val_loader, train_cell_id_mapping, val_cell_id_mapping, num_labels_list, trial_number=None, shared_dict=None):
"""Worker function for distributed training."""
setup_distributed_environment(rank, world_size, config)
config["local_rank"] = rank
# Set up distributed samplers
from torch.utils.data import DistributedSampler
from .data import get_data_loader
train_sampler = DistributedSampler(train_loader.dataset, num_replicas=world_size, rank=rank, shuffle=True, drop_last=False)
val_sampler = DistributedSampler(val_loader.dataset, num_replicas=world_size, rank=rank, shuffle=False, drop_last=False)
train_loader = get_data_loader(train_loader.dataset, config["batch_size"], sampler=train_sampler, shuffle=False)
val_loader = get_data_loader(val_loader.dataset, config["batch_size"], sampler=val_sampler, shuffle=False)
if rank == 0:
print(f"Rank {rank}: Training {len(train_sampler)} samples, Validation {len(val_sampler)} samples")
print(f"Total samples across {world_size} GPUs: Training {len(train_sampler) * world_size}, Validation {len(val_sampler) * world_size}")
# Create and setup trainer
trainer = trainer_class(config)
train_loader, val_loader, train_cell_id_mapping, val_cell_id_mapping, num_labels_list = trainer.setup(
train_loader, val_loader, train_cell_id_mapping, val_cell_id_mapping, num_labels_list
)
# Train the model
val_loss, model = trainer.train(
train_loader, val_loader, train_cell_id_mapping, val_cell_id_mapping, num_labels_list
)
# Save model only from the main process
if rank == 0:
model_save_directory = os.path.join(config["model_save_path"], "GeneformerMultiTask")
save_model(model, model_save_directory)
save_hyperparameters(model_save_directory, {
**get_config_value(config, "manual_hyperparameters", {}),
"dropout_rate": config["dropout_rate"],
"use_task_weights": config["use_task_weights"],
"task_weights": config["task_weights"],
"max_layers_to_freeze": config["max_layers_to_freeze"],
"use_attention_pooling": config["use_attention_pooling"],
})
# For Optuna trials, store results in shared dictionary
if shared_dict is not None:
shared_dict['val_loss'] = val_loss
# Run validation on full dataset from rank 0 for consistent metrics
full_val_loader = get_data_loader(val_loader.dataset, config["batch_size"], sampler=None, shuffle=False)
# Get validation predictions using our utility function
task_true_labels, task_pred_labels, task_pred_probs = collect_validation_predictions(
model, full_val_loader, trainer.device, config
)
# Calculate metrics
task_metrics = calculate_metrics(labels=task_true_labels, preds=task_pred_labels, metric_type="task_specific")
shared_dict['task_metrics'] = task_metrics
# Store model state dict
if isinstance(model, DDP):
model_state_dict = model.module.state_dict()
else:
model_state_dict = model.state_dict()
shared_dict['model_state_dict'] = {k: v.cpu() for k, v in model_state_dict.items()}
# Clean up distributed environment
dist.destroy_process_group()
def save_model_without_heads(model_directory):
"""
Save a version of the fine-tuned model without classification heads.
Args:
model_directory (str): Path to the directory containing the fine-tuned model
"""
import torch
from transformers import BertConfig, BertModel
# Load the full model
model_path = os.path.join(model_directory, "pytorch_model.bin")
config_path = os.path.join(model_directory, "config.json")
if not os.path.exists(model_path) or not os.path.exists(config_path):
raise FileNotFoundError(f"Model files not found in {model_directory}")
# Load the configuration
config = BertConfig.from_json_file(config_path)
# Load the model state dict
state_dict = torch.load(model_path, map_location=torch.device('cpu'))
# Create a new model without heads
base_model = BertModel(config)
# Filter out the classification head parameters
base_model_state_dict = {}
for key, value in state_dict.items():
# Only keep parameters that belong to the base model (not classification heads)
if not key.startswith('classification_heads') and not key.startswith('attention_pool'):
base_model_state_dict[key] = value
# Load the filtered state dict into the base model
base_model.load_state_dict(base_model_state_dict, strict=False)
# Save the model without heads
output_dir = os.path.join(model_directory, "model_without_heads")
os.makedirs(output_dir, exist_ok=True)
# Save the model weights
torch.save(base_model.state_dict(), os.path.join(output_dir, "pytorch_model.bin"))
# Save the configuration
base_model.config.to_json_file(os.path.join(output_dir, "config.json"))
print(f"Model without classification heads saved to {output_dir}")
return output_dir
def get_config_value(config: Dict, key: str, default=None):
return config.get(key, default)
def collect_validation_predictions(model, val_loader, device, config) -> tuple:
task_true_labels = {}
task_pred_labels = {}
task_pred_probs = {}
with torch.no_grad():
for batch in val_loader:
input_ids = batch["input_ids"].to(device)
attention_mask = batch["attention_mask"].to(device)
labels = [batch["labels"][task_name].to(device) for task_name in config["task_names"]]
_, logits, _ = model(input_ids, attention_mask, labels)
for sample_idx in range(len(batch["input_ids"])):
for i, task_name in enumerate(config["task_names"]):
if task_name not in task_true_labels:
task_true_labels[task_name] = []
task_pred_labels[task_name] = []
task_pred_probs[task_name] = []
true_label = batch["labels"][task_name][sample_idx].item()
pred_label = torch.argmax(logits[i][sample_idx], dim=-1).item()
pred_prob = torch.softmax(logits[i][sample_idx], dim=-1).cpu().numpy()
task_true_labels[task_name].append(true_label)
task_pred_labels[task_name].append(pred_label)
task_pred_probs[task_name].append(pred_prob)
return task_true_labels, task_pred_labels, task_pred_probs
|