Clément Thiriet
commited on
Commit
·
dede63a
1
Parent(s):
f0df3ea
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.15 +/- 0.11
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b6db36d845edc4079d45c683edd8867a099d3b42fc2deb4a7bcbc8f46e3f7d9
|
3 |
+
size 108031
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f84a2d46ee0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f84a2d49780>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 282112,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1678701563809540483,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAATyrFv4RYQT+sVjQ/5wqZv05Oxz8+Fx+/0nYvP0cpcj6o+XO/ARceP2DdVL9aTGk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6yOQv7FjaT+BEpg/KaSbv12FzD/9UDG/Psu5PprZoD49J62/HcgKP72cU79lyGE/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABPKsW/hFhBP6xWND/Yhm8/XuL5v46jlz7nCpm/Tk7HPz4XH78TdjW9S92Sv9H3tz3Sdi8/RylyPqj5c79XgQa+ll3aPwukYr8BFx4/YN1Uv1pMaT+SG7A+DzjaP0FomT+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[-1.5403537 0.7552569 0.7044475 ]\n [-1.1956452 1.5570772 -0.6214484 ]\n [ 0.6854068 0.23648559 -0.9530282 ]\n [ 0.6175385 -0.8315029 0.9113213 ]]",
|
60 |
+
"desired_goal": "[[-1.1260961 0.9116774 1.1880647 ]\n [-1.2159473 1.5978199 -0.69264203]\n [ 0.36287874 0.31416017 -1.35276 ]\n [ 0.542116 -0.8266104 0.881964 ]]",
|
61 |
+
"observation": "[[-1.5403537 0.7552569 0.7044475 0.9356513 -1.9522207 0.2961697 ]\n [-1.1956452 1.5570772 -0.6214484 -0.04430206 -1.1473783 0.08982814]\n [ 0.6854068 0.23648559 -0.9530282 -0.13135277 1.705981 -0.8853156 ]\n [ 0.6175385 -0.8315029 0.9113213 0.34396034 1.7048358 1.1984941 ]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8yOHutgbFz6BIZw9vo/qPc/ktj0LGD4+DprRPaEUbD2vmWE+V3QJPVIvwD2ySZw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.00103104 0.14756715 0.07623578]\n [ 0.11453198 0.08930361 0.18563859]\n [ 0.10234462 0.05763686 0.22031282]\n [ 0.03355822 0.09384026 0.07631244]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.71792,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI68iRzsCI87+UhpRSlIwBbJRLMowBdJRHQIpk0MTewcJ1fZQoaAZoCWgPQwjay7bT1gjzv5SGlFKUaBVLMmgWR0CKY1dSEUTMdX2UKGgGaAloD0MI1IBB0qfV87+UhpRSlGgVSzJoFkdAimG7SJCSinV9lChoBmgJaA9DCHJPV3csdvG/lIaUUpRoFUsyaBZHQIpgJ7AtWdV1fZQoaAZoCWgPQwgGS3UBLzP0v5SGlFKUaBVLMmgWR0CKaKc9W6sidX2UKGgGaAloD0MIJclzfR9O9b+UhpRSlGgVSzJoFkdAimctxuKoAHV9lChoBmgJaA9DCMdkcf+Rqfa/lIaUUpRoFUsyaBZHQIplkXxe9jB1fZQoaAZoCWgPQwiaBkXzANbyv5SGlFKUaBVLMmgWR0CKY/2+wkgPdX2UKGgGaAloD0MI3qrrUE1J8r+UhpRSlGgVSzJoFkdAimxqFqSHM3V9lChoBmgJaA9DCK2h1F5EG/W/lIaUUpRoFUsyaBZHQIpq82YOUdJ1fZQoaAZoCWgPQwhHjnQGRt7yv5SGlFKUaBVLMmgWR0CKaVeXRgJDdX2UKGgGaAloD0MIfTz03a0s9r+UhpRSlGgVSzJoFkdAimfD0+TvA3V9lChoBmgJaA9DCCXK3lLOV/a/lIaUUpRoFUsyaBZHQIpwhgssg+11fZQoaAZoCWgPQwiKV1nbFE/zv5SGlFKUaBVLMmgWR0CKbw0svqTsdX2UKGgGaAloD0MIe6GA7WAE+L+UhpRSlGgVSzJoFkdAim1xigCfYnV9lChoBmgJaA9DCF37AnrhDvS/lIaUUpRoFUsyaBZHQIpr3qRlpXZ1fZQoaAZoCWgPQwjVXkTbMXX3v5SGlFKUaBVLMmgWR0CKdEPpY9xIdX2UKGgGaAloD0MI0c5pFmg39L+UhpRSlGgVSzJoFkdAinLLJKaodnV9lChoBmgJaA9DCP9aXrnetvm/lIaUUpRoFUsyaBZHQIpxLst03fh1fZQoaAZoCWgPQwjZJD/iV+z3v5SGlFKUaBVLMmgWR0CKb5z5GjKxdX2UKGgGaAloD0MIHTnSGRj59b+UhpRSlGgVSzJoFkdAingCiRGMGXV9lChoBmgJaA9DCHMSSl8IOfK/lIaUUpRoFUsyaBZHQIp2iWqtHQR1fZQoaAZoCWgPQwjBHD1+bxP1v5SGlFKUaBVLMmgWR0CKdO1DSgGsdX2UKGgGaAloD0MICklm9Q738r+UhpRSlGgVSzJoFkdAinNZZKWcBnV9lChoBmgJaA9DCNeIYBxcOva/lIaUUpRoFUsyaBZHQIp7zaCcwxp1fZQoaAZoCWgPQwiNgApHkMr0v5SGlFKUaBVLMmgWR0CKelQFcIJJdX2UKGgGaAloD0MIH2Yv207b9r+UhpRSlGgVSzJoFkdAini3qJMxoXV9lChoBmgJaA9DCG+e6pCbofG/lIaUUpRoFUsyaBZHQIp3I7muDBd1fZQoaAZoCWgPQwhOJm4VxED2v5SGlFKUaBVLMmgWR0CKf5MyJsO5dX2UKGgGaAloD0MIf73CgvuB9L+UhpRSlGgVSzJoFkdAin4aqCHymXV9lChoBmgJaA9DCAa8zLBRVvK/lIaUUpRoFUsyaBZHQIp8fnfVI7N1fZQoaAZoCWgPQwibHhSUotXyv5SGlFKUaBVLMmgWR0CKeuqvvBrOdX2UKGgGaAloD0MICTVDqije9b+UhpRSlGgVSzJoFkdAioNMotthu3V9lChoBmgJaA9DCJMYBFYO7fO/lIaUUpRoFUsyaBZHQIqB1ALRa5h1fZQoaAZoCWgPQwjXS1MEOP3zv5SGlFKUaBVLMmgWR0CKgDk92X9jdX2UKGgGaAloD0MI5X/yd+8o9L+UhpRSlGgVSzJoFkdAin6l0o0ALnV9lChoBmgJaA9DCEg0gSIWcfW/lIaUUpRoFUsyaBZHQIqHNIkJKJ51fZQoaAZoCWgPQwjQYFPnUfHyv5SGlFKUaBVLMmgWR0CKhbuNPxhEdX2UKGgGaAloD0MICXHl7J3R77+UhpRSlGgVSzJoFkdAioQfms/6f3V9lChoBmgJaA9DCNI3aRoUDfS/lIaUUpRoFUsyaBZHQIqCjFGXokl1fZQoaAZoCWgPQwiCrKdWXx32v5SGlFKUaBVLMmgWR0CKiy6wt8NQdX2UKGgGaAloD0MIDrvvGB6787+UhpRSlGgVSzJoFkdAiom1XeWOZXV9lChoBmgJaA9DCMlXAimxq/K/lIaUUpRoFUsyaBZHQIqIGRDCxeN1fZQoaAZoCWgPQwi++KI9Xsj2v5SGlFKUaBVLMmgWR0CKhoWfseGPdX2UKGgGaAloD0MIZ2X7kLcc9b+UhpRSlGgVSzJoFkdAio8IPK+zt3V9lChoBmgJaA9DCL+CNGPRdPG/lIaUUpRoFUsyaBZHQIqNj4YaYNR1fZQoaAZoCWgPQwijeJW1TfH1v5SGlFKUaBVLMmgWR0CKi/McIZ62dX2UKGgGaAloD0MIDR07qMS18L+UhpRSlGgVSzJoFkdAiopfdqL0jHV9lChoBmgJaA9DCJ2bNuM0RPa/lIaUUpRoFUsyaBZHQIqSyvkili11fZQoaAZoCWgPQwg+BcB4Bk30v5SGlFKUaBVLMmgWR0CKkVGViWmhdX2UKGgGaAloD0MItw2jIHg897+UhpRSlGgVSzJoFkdAio+1LJ0W/XV9lChoBmgJaA9DCBZLkXwl0PG/lIaUUpRoFUsyaBZHQIqOIpYs/Y91fZQoaAZoCWgPQwhV2uIan4n0v5SGlFKUaBVLMmgWR0CKlq3DNyHVdX2UKGgGaAloD0MIdm1vtyQH8b+UhpRSlGgVSzJoFkdAipU0QkHD8HV9lChoBmgJaA9DCNIb7iO35vW/lIaUUpRoFUsyaBZHQIqTmc2BJ7N1fZQoaAZoCWgPQwggmKPH7y31v5SGlFKUaBVLMmgWR0CKkgab4Ju3dX2UKGgGaAloD0MI66hqgqh79r+UhpRSlGgVSzJoFkdAippp04iosXV9lChoBmgJaA9DCBXhJqPKsPW/lIaUUpRoFUsyaBZHQIqY8IiTt9h1fZQoaAZoCWgPQwi5bHTOTzH0v5SGlFKUaBVLMmgWR0CKl1RHf/FSdX2UKGgGaAloD0MIrkfhehRu8r+UhpRSlGgVSzJoFkdAipXAqur6tXV9lChoBmgJaA9DCHLcKR2sP/S/lIaUUpRoFUsyaBZHQIqeVjPOY6Z1fZQoaAZoCWgPQwiNeohGdxDyv5SGlFKUaBVLMmgWR0CKnN0V8CxNdX2UKGgGaAloD0MI9DXLZaPz87+UhpRSlGgVSzJoFkdAiptBA4XGfnV9lChoBmgJaA9DCK/OMSB7/fW/lIaUUpRoFUsyaBZHQIqZrULDye91fZQoaAZoCWgPQwjZtFII5NL0v5SGlFKUaBVLMmgWR0CKorcKPXCkdX2UKGgGaAloD0MIqDRiZp+H9L+UhpRSlGgVSzJoFkdAiqFAbIcR2HV9lChoBmgJaA9DCHYaaam8nfC/lIaUUpRoFUsyaBZHQIqfpoTPBzp1fZQoaAZoCWgPQwjpR8Mpc7Pzv5SGlFKUaBVLMmgWR0CKnhXYlIEsdX2UKGgGaAloD0MI+l+uRQsQ+L+UhpRSlGgVSzJoFkdAiqk0PYnOSnV9lChoBmgJaA9DCL+YLVkVofC/lIaUUpRoFUsyaBZHQIqnvktEofF1fZQoaAZoCWgPQwjUfJV87G7zv5SGlFKUaBVLMmgWR0CKpiWBz3h5dX2UKGgGaAloD0MImShC6nY28r+UhpRSlGgVSzJoFkdAiqSUcOskp3V9lChoBmgJaA9DCKgBg6RPa/S/lIaUUpRoFUsyaBZHQIqviuuA7Pp1fZQoaAZoCWgPQwhqUDQPYBH1v5SGlFKUaBVLMmgWR0CKrhO9nK4hdX2UKGgGaAloD0MI+3d95qwP9r+UhpRSlGgVSzJoFkdAiqx7PY4ACHV9lChoBmgJaA9DCAq9/iQ+t/O/lIaUUpRoFUsyaBZHQIqq7hP0qYt1fZQoaAZoCWgPQwhmE2BY/jz0v5SGlFKUaBVLMmgWR0CKtdyYoiLVdX2UKGgGaAloD0MIlMDmHDzT9r+UhpRSlGgVSzJoFkdAirRlw1ivxHV9lChoBmgJaA9DCInPnWD/tfK/lIaUUpRoFUsyaBZHQIqyzxsl9jR1fZQoaAZoCWgPQwhpOjsZHCX3v5SGlFKUaBVLMmgWR0CKsUC5mRNidX2UKGgGaAloD0MILQd6qG3D9r+UhpRSlGgVSzJoFkdAirzKHoHLR3V9lChoBmgJaA9DCGn/A6xV+/O/lIaUUpRoFUsyaBZHQIq7U+7lJYl1fZQoaAZoCWgPQwgS3h6EgDz2v5SGlFKUaBVLMmgWR0CKubuCPIXCdX2UKGgGaAloD0MIhX07iQi/97+UhpRSlGgVSzJoFkdAirgscyWRinV9lChoBmgJaA9DCIauRKD6R/O/lIaUUpRoFUsyaBZHQIrDHXiBGx51fZQoaAZoCWgPQwh+GCE82vj4v5SGlFKUaBVLMmgWR0CKwaW2PT5PdX2UKGgGaAloD0MIpmCNs+mI9b+UhpRSlGgVSzJoFkdAisALK3d9D3V9lChoBmgJaA9DCPbv+sxZH/a/lIaUUpRoFUsyaBZHQIq+ekFfReF1fZQoaAZoCWgPQwiHb2HdeLf1v5SGlFKUaBVLMmgWR0CKyZs4T9KmdX2UKGgGaAloD0MIbVhTWRR29L+UhpRSlGgVSzJoFkdAisglEqlP8HV9lChoBmgJaA9DCJpbIazGkvW/lIaUUpRoFUsyaBZHQIrGjD8+A3F1fZQoaAZoCWgPQwhn8PeL2RL1v5SGlFKUaBVLMmgWR0CKxP2nsLOSdX2UKGgGaAloD0MIZ9E7FXAP9L+UhpRSlGgVSzJoFkdAis8tdJJ5FHV9lChoBmgJaA9DCGtKsg5H1/G/lIaUUpRoFUsyaBZHQIrNtIwudwx1fZQoaAZoCWgPQwi0VrQ5zi32v5SGlFKUaBVLMmgWR0CKzBhNucc3dX2UKGgGaAloD0MIMpBnl2898b+UhpRSlGgVSzJoFkdAisqE/0NBnnV9lChoBmgJaA9DCMn/5O/ekfK/lIaUUpRoFUsyaBZHQIrSyU/wAlx1fZQoaAZoCWgPQwjThO0nY3z3v5SGlFKUaBVLMmgWR0CK0VABT4tZdX2UKGgGaAloD0MIA+yjU1e+8b+UhpRSlGgVSzJoFkdAis+zd+G47XV9lChoBmgJaA9DCA97oYDtYPW/lIaUUpRoFUsyaBZHQIrOIAKfFrF1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 7052,
|
87 |
+
"n_steps": 10,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db2466538d6e162e4fa2184ddbb04eae1bd7482c9d7bda8330839e339f63ed29
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:93dde78ce525e7e7a5949f9fcb25768362d83e24ec7aa5fdbed4f7d4dbc6a62b
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f84a2d46ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f84a2d49780>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 282112, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678701563809540483, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAATyrFv4RYQT+sVjQ/5wqZv05Oxz8+Fx+/0nYvP0cpcj6o+XO/ARceP2DdVL9aTGk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6yOQv7FjaT+BEpg/KaSbv12FzD/9UDG/Psu5PprZoD49J62/HcgKP72cU79lyGE/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABPKsW/hFhBP6xWND/Yhm8/XuL5v46jlz7nCpm/Tk7HPz4XH78TdjW9S92Sv9H3tz3Sdi8/RylyPqj5c79XgQa+ll3aPwukYr8BFx4/YN1Uv1pMaT+SG7A+DzjaP0FomT+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-1.5403537 0.7552569 0.7044475 ]\n [-1.1956452 1.5570772 -0.6214484 ]\n [ 0.6854068 0.23648559 -0.9530282 ]\n [ 0.6175385 -0.8315029 0.9113213 ]]", "desired_goal": "[[-1.1260961 0.9116774 1.1880647 ]\n [-1.2159473 1.5978199 -0.69264203]\n [ 0.36287874 0.31416017 -1.35276 ]\n [ 0.542116 -0.8266104 0.881964 ]]", "observation": "[[-1.5403537 0.7552569 0.7044475 0.9356513 -1.9522207 0.2961697 ]\n [-1.1956452 1.5570772 -0.6214484 -0.04430206 -1.1473783 0.08982814]\n [ 0.6854068 0.23648559 -0.9530282 -0.13135277 1.705981 -0.8853156 ]\n [ 0.6175385 -0.8315029 0.9113213 0.34396034 1.7048358 1.1984941 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8yOHutgbFz6BIZw9vo/qPc/ktj0LGD4+DprRPaEUbD2vmWE+V3QJPVIvwD2ySZw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.00103104 0.14756715 0.07623578]\n [ 0.11453198 0.08930361 0.18563859]\n [ 0.10234462 0.05763686 0.22031282]\n [ 0.03355822 0.09384026 0.07631244]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.71792, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI68iRzsCI87+UhpRSlIwBbJRLMowBdJRHQIpk0MTewcJ1fZQoaAZoCWgPQwjay7bT1gjzv5SGlFKUaBVLMmgWR0CKY1dSEUTMdX2UKGgGaAloD0MI1IBB0qfV87+UhpRSlGgVSzJoFkdAimG7SJCSinV9lChoBmgJaA9DCHJPV3csdvG/lIaUUpRoFUsyaBZHQIpgJ7AtWdV1fZQoaAZoCWgPQwgGS3UBLzP0v5SGlFKUaBVLMmgWR0CKaKc9W6sidX2UKGgGaAloD0MIJclzfR9O9b+UhpRSlGgVSzJoFkdAimctxuKoAHV9lChoBmgJaA9DCMdkcf+Rqfa/lIaUUpRoFUsyaBZHQIplkXxe9jB1fZQoaAZoCWgPQwiaBkXzANbyv5SGlFKUaBVLMmgWR0CKY/2+wkgPdX2UKGgGaAloD0MI3qrrUE1J8r+UhpRSlGgVSzJoFkdAimxqFqSHM3V9lChoBmgJaA9DCK2h1F5EG/W/lIaUUpRoFUsyaBZHQIpq82YOUdJ1fZQoaAZoCWgPQwhHjnQGRt7yv5SGlFKUaBVLMmgWR0CKaVeXRgJDdX2UKGgGaAloD0MIfTz03a0s9r+UhpRSlGgVSzJoFkdAimfD0+TvA3V9lChoBmgJaA9DCCXK3lLOV/a/lIaUUpRoFUsyaBZHQIpwhgssg+11fZQoaAZoCWgPQwiKV1nbFE/zv5SGlFKUaBVLMmgWR0CKbw0svqTsdX2UKGgGaAloD0MIe6GA7WAE+L+UhpRSlGgVSzJoFkdAim1xigCfYnV9lChoBmgJaA9DCF37AnrhDvS/lIaUUpRoFUsyaBZHQIpr3qRlpXZ1fZQoaAZoCWgPQwjVXkTbMXX3v5SGlFKUaBVLMmgWR0CKdEPpY9xIdX2UKGgGaAloD0MI0c5pFmg39L+UhpRSlGgVSzJoFkdAinLLJKaodnV9lChoBmgJaA9DCP9aXrnetvm/lIaUUpRoFUsyaBZHQIpxLst03fh1fZQoaAZoCWgPQwjZJD/iV+z3v5SGlFKUaBVLMmgWR0CKb5z5GjKxdX2UKGgGaAloD0MIHTnSGRj59b+UhpRSlGgVSzJoFkdAingCiRGMGXV9lChoBmgJaA9DCHMSSl8IOfK/lIaUUpRoFUsyaBZHQIp2iWqtHQR1fZQoaAZoCWgPQwjBHD1+bxP1v5SGlFKUaBVLMmgWR0CKdO1DSgGsdX2UKGgGaAloD0MICklm9Q738r+UhpRSlGgVSzJoFkdAinNZZKWcBnV9lChoBmgJaA9DCNeIYBxcOva/lIaUUpRoFUsyaBZHQIp7zaCcwxp1fZQoaAZoCWgPQwiNgApHkMr0v5SGlFKUaBVLMmgWR0CKelQFcIJJdX2UKGgGaAloD0MIH2Yv207b9r+UhpRSlGgVSzJoFkdAini3qJMxoXV9lChoBmgJaA9DCG+e6pCbofG/lIaUUpRoFUsyaBZHQIp3I7muDBd1fZQoaAZoCWgPQwhOJm4VxED2v5SGlFKUaBVLMmgWR0CKf5MyJsO5dX2UKGgGaAloD0MIf73CgvuB9L+UhpRSlGgVSzJoFkdAin4aqCHymXV9lChoBmgJaA9DCAa8zLBRVvK/lIaUUpRoFUsyaBZHQIp8fnfVI7N1fZQoaAZoCWgPQwibHhSUotXyv5SGlFKUaBVLMmgWR0CKeuqvvBrOdX2UKGgGaAloD0MICTVDqije9b+UhpRSlGgVSzJoFkdAioNMotthu3V9lChoBmgJaA9DCJMYBFYO7fO/lIaUUpRoFUsyaBZHQIqB1ALRa5h1fZQoaAZoCWgPQwjXS1MEOP3zv5SGlFKUaBVLMmgWR0CKgDk92X9jdX2UKGgGaAloD0MI5X/yd+8o9L+UhpRSlGgVSzJoFkdAin6l0o0ALnV9lChoBmgJaA9DCEg0gSIWcfW/lIaUUpRoFUsyaBZHQIqHNIkJKJ51fZQoaAZoCWgPQwjQYFPnUfHyv5SGlFKUaBVLMmgWR0CKhbuNPxhEdX2UKGgGaAloD0MICXHl7J3R77+UhpRSlGgVSzJoFkdAioQfms/6f3V9lChoBmgJaA9DCNI3aRoUDfS/lIaUUpRoFUsyaBZHQIqCjFGXokl1fZQoaAZoCWgPQwiCrKdWXx32v5SGlFKUaBVLMmgWR0CKiy6wt8NQdX2UKGgGaAloD0MIDrvvGB6787+UhpRSlGgVSzJoFkdAiom1XeWOZXV9lChoBmgJaA9DCMlXAimxq/K/lIaUUpRoFUsyaBZHQIqIGRDCxeN1fZQoaAZoCWgPQwi++KI9Xsj2v5SGlFKUaBVLMmgWR0CKhoWfseGPdX2UKGgGaAloD0MIZ2X7kLcc9b+UhpRSlGgVSzJoFkdAio8IPK+zt3V9lChoBmgJaA9DCL+CNGPRdPG/lIaUUpRoFUsyaBZHQIqNj4YaYNR1fZQoaAZoCWgPQwijeJW1TfH1v5SGlFKUaBVLMmgWR0CKi/McIZ62dX2UKGgGaAloD0MIDR07qMS18L+UhpRSlGgVSzJoFkdAiopfdqL0jHV9lChoBmgJaA9DCJ2bNuM0RPa/lIaUUpRoFUsyaBZHQIqSyvkili11fZQoaAZoCWgPQwg+BcB4Bk30v5SGlFKUaBVLMmgWR0CKkVGViWmhdX2UKGgGaAloD0MItw2jIHg897+UhpRSlGgVSzJoFkdAio+1LJ0W/XV9lChoBmgJaA9DCBZLkXwl0PG/lIaUUpRoFUsyaBZHQIqOIpYs/Y91fZQoaAZoCWgPQwhV2uIan4n0v5SGlFKUaBVLMmgWR0CKlq3DNyHVdX2UKGgGaAloD0MIdm1vtyQH8b+UhpRSlGgVSzJoFkdAipU0QkHD8HV9lChoBmgJaA9DCNIb7iO35vW/lIaUUpRoFUsyaBZHQIqTmc2BJ7N1fZQoaAZoCWgPQwggmKPH7y31v5SGlFKUaBVLMmgWR0CKkgab4Ju3dX2UKGgGaAloD0MI66hqgqh79r+UhpRSlGgVSzJoFkdAippp04iosXV9lChoBmgJaA9DCBXhJqPKsPW/lIaUUpRoFUsyaBZHQIqY8IiTt9h1fZQoaAZoCWgPQwi5bHTOTzH0v5SGlFKUaBVLMmgWR0CKl1RHf/FSdX2UKGgGaAloD0MIrkfhehRu8r+UhpRSlGgVSzJoFkdAipXAqur6tXV9lChoBmgJaA9DCHLcKR2sP/S/lIaUUpRoFUsyaBZHQIqeVjPOY6Z1fZQoaAZoCWgPQwiNeohGdxDyv5SGlFKUaBVLMmgWR0CKnN0V8CxNdX2UKGgGaAloD0MI9DXLZaPz87+UhpRSlGgVSzJoFkdAiptBA4XGfnV9lChoBmgJaA9DCK/OMSB7/fW/lIaUUpRoFUsyaBZHQIqZrULDye91fZQoaAZoCWgPQwjZtFII5NL0v5SGlFKUaBVLMmgWR0CKorcKPXCkdX2UKGgGaAloD0MIqDRiZp+H9L+UhpRSlGgVSzJoFkdAiqFAbIcR2HV9lChoBmgJaA9DCHYaaam8nfC/lIaUUpRoFUsyaBZHQIqfpoTPBzp1fZQoaAZoCWgPQwjpR8Mpc7Pzv5SGlFKUaBVLMmgWR0CKnhXYlIEsdX2UKGgGaAloD0MI+l+uRQsQ+L+UhpRSlGgVSzJoFkdAiqk0PYnOSnV9lChoBmgJaA9DCL+YLVkVofC/lIaUUpRoFUsyaBZHQIqnvktEofF1fZQoaAZoCWgPQwjUfJV87G7zv5SGlFKUaBVLMmgWR0CKpiWBz3h5dX2UKGgGaAloD0MImShC6nY28r+UhpRSlGgVSzJoFkdAiqSUcOskp3V9lChoBmgJaA9DCKgBg6RPa/S/lIaUUpRoFUsyaBZHQIqviuuA7Pp1fZQoaAZoCWgPQwhqUDQPYBH1v5SGlFKUaBVLMmgWR0CKrhO9nK4hdX2UKGgGaAloD0MI+3d95qwP9r+UhpRSlGgVSzJoFkdAiqx7PY4ACHV9lChoBmgJaA9DCAq9/iQ+t/O/lIaUUpRoFUsyaBZHQIqq7hP0qYt1fZQoaAZoCWgPQwhmE2BY/jz0v5SGlFKUaBVLMmgWR0CKtdyYoiLVdX2UKGgGaAloD0MIlMDmHDzT9r+UhpRSlGgVSzJoFkdAirRlw1ivxHV9lChoBmgJaA9DCInPnWD/tfK/lIaUUpRoFUsyaBZHQIqyzxsl9jR1fZQoaAZoCWgPQwhpOjsZHCX3v5SGlFKUaBVLMmgWR0CKsUC5mRNidX2UKGgGaAloD0MILQd6qG3D9r+UhpRSlGgVSzJoFkdAirzKHoHLR3V9lChoBmgJaA9DCGn/A6xV+/O/lIaUUpRoFUsyaBZHQIq7U+7lJYl1fZQoaAZoCWgPQwgS3h6EgDz2v5SGlFKUaBVLMmgWR0CKubuCPIXCdX2UKGgGaAloD0MIhX07iQi/97+UhpRSlGgVSzJoFkdAirgscyWRinV9lChoBmgJaA9DCIauRKD6R/O/lIaUUpRoFUsyaBZHQIrDHXiBGx51fZQoaAZoCWgPQwh+GCE82vj4v5SGlFKUaBVLMmgWR0CKwaW2PT5PdX2UKGgGaAloD0MIpmCNs+mI9b+UhpRSlGgVSzJoFkdAisALK3d9D3V9lChoBmgJaA9DCPbv+sxZH/a/lIaUUpRoFUsyaBZHQIq+ekFfReF1fZQoaAZoCWgPQwiHb2HdeLf1v5SGlFKUaBVLMmgWR0CKyZs4T9KmdX2UKGgGaAloD0MIbVhTWRR29L+UhpRSlGgVSzJoFkdAisglEqlP8HV9lChoBmgJaA9DCJpbIazGkvW/lIaUUpRoFUsyaBZHQIrGjD8+A3F1fZQoaAZoCWgPQwhn8PeL2RL1v5SGlFKUaBVLMmgWR0CKxP2nsLOSdX2UKGgGaAloD0MIZ9E7FXAP9L+UhpRSlGgVSzJoFkdAis8tdJJ5FHV9lChoBmgJaA9DCGtKsg5H1/G/lIaUUpRoFUsyaBZHQIrNtIwudwx1fZQoaAZoCWgPQwi0VrQ5zi32v5SGlFKUaBVLMmgWR0CKzBhNucc3dX2UKGgGaAloD0MIMpBnl2898b+UhpRSlGgVSzJoFkdAisqE/0NBnnV9lChoBmgJaA9DCMn/5O/ekfK/lIaUUpRoFUsyaBZHQIrSyU/wAlx1fZQoaAZoCWgPQwjThO0nY3z3v5SGlFKUaBVLMmgWR0CK0VABT4tZdX2UKGgGaAloD0MIA+yjU1e+8b+UhpRSlGgVSzJoFkdAis+zd+G47XV9lChoBmgJaA9DCA97oYDtYPW/lIaUUpRoFUsyaBZHQIrOIAKfFrF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 7052, "n_steps": 10, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (746 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.1509346106322482, "std_reward": 0.10503895013031116, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-13T10:13:50.589738"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3cfa69f1d1361fb82c7bb3d91c540ca40ab2ec8f0ca73374fd1e8e4fd22a40a6
|
3 |
+
size 3056
|