File size: 2,043 Bytes
74b211d 241f8dd 74b211d 241f8dd 74b211d 8d736ea 164d6ed 8d736ea 164d6ed 8d736ea 74b211d 8d736ea 74b211d 8d736ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
language: en
license: apache-2.0
pipeline_tag: image-segmentation
library_name: transformers
tags:
- layer decomposition
- image segmentation
- image matting
- design
---
## LayerD BiRefNet Matting Module
<div align="left">
[](https://arxiv.org/abs/2509.25134)
<a href='https://cyberagentailab.github.io/LayerD/'><img src='https://img.shields.io/badge/Project-Page-Green'></a>
</div>
This repository contains the code and model weights for the matting module in [LayerD [ICCV'25]](https://arxiv.org/abs/2509.25134), a layer decomposition framework for graphic design images.
The model in this repository is **intended to be used as a part of the original [LayerD github repository](https://github.com/CyberAgentAILab/LayerD)**.
Please visit https://github.com/CyberAgentAILab/LayerD for more information.

The model architecture code is based on the [BiRefNet repository](https://huggingface.co/ZhengPeng7/BiRefNet). We thank the authors for releasing their high-quality matting model.
### Usage
This repository is intended for use with LayerD, so we recommend following the instructions in the [LayerD repository](https://github.com/CyberAgentAILab/LayerD).
For reference, the original LayerD uses this model as follows:
```python
from transformers import AutoModelForImageSegmentation
birefnet = AutoModelForImageSegmentation.from_pretrained('cyberagent/layerd-birefnet', trust_remote_code=True)
```
### License
This repository is released under the Apache-2.0 license, the same as [the LayerD repository](https://github.com/CyberAgentAILab/LayerD/blob/main/LICENSE).
The original BiRefNet is released under the [MIT license](https://huggingface.co/ZhengPeng7/BiRefNet/blob/main/README.md).
### Citation
```bibtex
@inproceedings{suzuki2025layerd,
title={LayerD: Decomposing Raster Graphic Designs into Layers},
author={Suzuki, Tomoyuki and Liu, Kang-Jun and Inoue, Naoto and Yamaguchi, Kota},
booktitle={ICCV},
year={2025}
}
``` |