--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen3-0.6B-Base tags: - axolotl - generated_from_trainer datasets: - cyberbabooshka/MNLP_M2_mcqa_dataset model-index: - name: base_noreasoning results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.10.0.dev0` ```yaml base_model: Qwen/Qwen3-0.6B-Base hub_model_id: cyberbabooshka/base_noreasoning wandb_name: base tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false num_processes: 64 dataset_processes: 64 dataset_prepared_path: last_run_prepared chat_template: jinja chat_template_jinja: >- {%- for message in messages %} {{- '<|im_start|>' + message.role + '\n' + message.content.lstrip('\n') + '<|im_end|>' + '\n' }} {%- endfor %} {%- if add_generation_prompt %} {{- '<|im_start|>assistant\n' }} {%- endif %} datasets: - path: cyberbabooshka/MNLP_M2_mcqa_dataset split: train type: chat_template field_messages: messages train_on_eos: turn train_on_eot: turn message_property_mappings: role: role content: content roles: user: - user assistant: - assistant test_datasets: - path: cyberbabooshka/MNLP_M2_mcqa_dataset split: test type: chat_template field_messages: messages train_on_eos: turn train_on_eot: turn message_property_mappings: role: role content: content roles: user: - user assistant: - assistant output_dir: ./outputs sequence_len: 2048 batch_flattening: true sample_packing: false wandb_project: mnlp wandb_entity: aleksandr-dremov-epfl wandb_watch: wandb_log_model: gradient_accumulation_steps: 1 eval_batch_size: 16 micro_batch_size: 12 optimizer: ademamix_8bit weight_decay: 0.01 learning_rate: 0.00001 warmup_steps: 500 wsd_final_lr_factor: 0.0 wsd_init_div_factor: 100 wsd_fract_decay: 0.2 wsd_decay_type: "sqrt" wsd_sqrt_power: 0.5 wsd_cooldown_start_lr_factor: 1.0 bf16: auto tf32: false torch_compile: true flash_attention: true gradient_checkpointing: false resume_from_checkpoint: auto_resume_from_checkpoints: true logging_steps: 16 eval_steps: 2000 save_steps: 1000 max_steps: 35000 num_epochs: 20000000 save_total_limit: 2 special_tokens: eos_token: "<|im_end|>" pad_token: "<|endoftext|>" eot_tokens: - <|im_end|> plugins: - axolotl_wsd.WSDSchedulerPlugin ```

# base_noreasoning This model is a fine-tuned version of [Qwen/Qwen3-0.6B-Base](https://huggingface.co/Qwen/Qwen3-0.6B-Base) on the cyberbabooshka/MNLP_M2_mcqa_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.7964 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 12 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 24 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADEMAMIX_8BIT and the args are: No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - training_steps: 35000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | No log | 0.0000 | 1 | 0.9810 | | 0.8508 | 0.0556 | 2000 | 0.8516 | | 0.8877 | 0.1111 | 4000 | 0.8365 | | 0.8851 | 0.1667 | 6000 | 0.8281 | | 0.8193 | 0.2223 | 8000 | 0.8222 | | 0.8298 | 0.2778 | 10000 | 0.8177 | | 0.8439 | 0.3334 | 12000 | 0.8141 | | 0.8364 | 0.3890 | 14000 | 0.8111 | | 0.8015 | 0.4445 | 16000 | 0.8085 | | 0.8112 | 0.5001 | 18000 | 0.8062 | | 0.7972 | 0.5556 | 20000 | 0.8042 | | 0.8264 | 0.6112 | 22000 | 0.8024 | | 0.7728 | 0.6668 | 24000 | 0.8008 | | 0.7762 | 0.7223 | 26000 | 0.7992 | | 0.8185 | 0.7779 | 28000 | 0.7978 | | 0.8235 | 0.8335 | 30000 | 0.7967 | | 0.7812 | 0.8890 | 32000 | 0.7964 | | 0.7872 | 0.9446 | 34000 | 0.7964 | ### Framework versions - Transformers 4.52.1 - Pytorch 2.7.0+cu126 - Datasets 3.5.0 - Tokenizers 0.21.1