Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.23 +/- 0.06
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e91acba36dce6cf89748ef2dfaeca2b3b0fa42b8cca7ed21e511b021169e4bc
|
3 |
+
size 106832
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f976e5f57e0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f976e5fc940>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1697262395920391304,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAnSDDvxn0fL/it5q/kwSaPn2T0ru8Q+Q+kwSaPn2T0ru8Q+Q+kwSaPn2T0ru8Q+Q+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/qC2vyvtB7+yqAG/i2YPvrvpCb+BUD2+zdWCP+H+Qr5AyMu9olf1PoMWSb8BDmE/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACdIMO/GfR8v+K3mr8swZm/i46QPaYciL6TBJo+fZPSu7xD5D7MSf0+upfKu8Ccyj6TBJo+fZPSu7xD5D7MSf0+upfKu8Ccyj6TBJo+fZPSu7xD5D7MSf0+upfKu8Ccyj6UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[-1.5244328 -0.98809963 -1.2087367 ]\n [ 0.30081615 -0.00642627 0.44582927]\n [ 0.30081615 -0.00642627 0.44582927]\n [ 0.30081615 -0.00642627 0.44582927]]",
|
34 |
+
"desired_goal": "[[-1.4267881 -0.53096265 -0.50648034]\n [-0.14003961 -0.5387227 -0.18487741]\n [ 1.0221497 -0.19042541 -0.09950304]\n [ 0.4791842 -0.78549975 0.87911993]]",
|
35 |
+
"observation": "[[-1.5244328 -0.98809963 -1.2087367 -1.2012076 0.07058438 -0.26584357]\n [ 0.30081615 -0.00642627 0.44582927 0.49470365 -0.00618264 0.39572716]\n [ 0.30081615 -0.00642627 0.44582927 0.49470365 -0.00618264 0.39572716]\n [ 0.30081615 -0.00642627 0.44582927 0.49470365 -0.00618264 0.39572716]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8BzhvRmx1r1Qz/U9+73sPYK4w71Lcyw8YPXgvYWWcrxwS5E+VC8bPctwYD1jSyo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[-0.10991848 -0.10482997 0.12002432]\n [ 0.11559673 -0.09556676 0.01052553]\n [-0.10984302 -0.01480639 0.28377867]\n [ 0.03788693 0.05479507 0.1663032 ]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9UCdSVGCqaMAWyUSwOMAXSUR0Cke3ewcHW0dX2UKGgGR7/CUN8VpKzzaAdLAmgIR0Cke7fhuO0cdX2UKGgGR7/chPCVKPGRaAdLBWgIR0CkfDnIhhYvdX2UKGgGR7/Co73fyf+TaAdLAmgIR0Cke3/Aj6eodX2UKGgGR7/NAUtZmqYJaAdLA2gIR0Cke/1JcxCZdX2UKGgGR7/RI0qH446waAdLA2gIR0CkfEfgaWHDdX2UKGgGR7/W90ihWYF8aAdLBGgIR0Cke8pv5xiodX2UKGgGR7/Sb3oLXtjTaAdLA2gIR0Cke44bS7XhdX2UKGgGR7/U6CUX531SaAdLA2gIR0CkfAu5J9RadX2UKGgGR7/MANoakyk9aAdLA2gIR0CkfFQGnn+ydX2UKGgGR7/JTbWVeKKpaAdLA2gIR0Cke9ZeAuqWdX2UKGgGR7/RG21D0DlpaAdLA2gIR0CkfBfKp1ifdX2UKGgGR7/RWxhUipvQaAdLBGgIR0Cke55nlGPQdX2UKGgGR7+ffbblA/s3aAdLAWgIR0CkfB3kgfU4dX2UKGgGR7+6G21D0DlpaAdLAmgIR0Cke+D1f3N+dX2UKGgGR7/PddE9dNWVaAdLA2gIR0CkfGLD63y7dX2UKGgGR7/CDcuanaWYaAdLAmgIR0Cke6jJdSl4dX2UKGgGR7/AFHrhR64UaAdLAmgIR0CkfCZJsfq5dX2UKGgGR7/AQEIPbwjMaAdLAmgIR0CkfGsfigkDdX2UKGgGR7/Q9XtBv73xaAdLA2gIR0Cke+1iONo8dX2UKGgGR7/T4AS39aUzaAdLA2gIR0Cke7SrHU+cdX2UKGgGR7+5R8+iaiK0aAdLAmgIR0CkfHTundftdX2UKGgGR7/JzbvgFX7taAdLA2gIR0CkfDRp+MIedX2UKGgGR7+efVZs9B8haAdLAWgIR0CkfDhV+7UYdX2UKGgGR7/Gdmxt52QoaAdLA2gIR0Cke/upKjBVdX2UKGgGR7+0ZHd43WFwaAdLAmgIR0Cke7+SbH6udX2UKGgGR7/A9zOoo/iYaAdLAmgIR0CkfH8GTs6adX2UKGgGR7/BOBUaQ3glaAdLAmgIR0CkfEIphF3IdX2UKGgGR7/LpW3jMmngaAdLA2gIR0CkfI1f3N9qdX2UKGgGR7+w2606YE4eaAdLAmgIR0CkfEzt9hJAdX2UKGgGR7/WjXnQpnYhaAdLBGgIR0CkfBAbyYoidX2UKGgGR7/TbQTmGM4taAdLBWgIR0Cke9hrFfiQdX2UKGgGR7/CLFXJYDDCaAdLAmgIR0CkfJaakRBedX2UKGgGR7/JzT4L1EmZaAdLA2gIR0CkfFoAwPAgdX2UKGgGR7/N4bCJoCdSaAdLA2gIR0CkfB0KRdQgdX2UKGgGR7+xme18b70naAdLAmgIR0Cke+C5d4VzdX2UKGgGR7/QrAP/aQFLaAdLA2gIR0CkfKUvoNd7dX2UKGgGR7/RNyYG+sYEaAdLA2gIR0CkfGi4z7/GdX2UKGgGR7/ZBCUornTzaAdLBGgIR0CkfC/giu+zdX2UKGgGR7/g7tzCDVYqaAdLBGgIR0Cke/OOCGvfdX2UKGgGR7/IUpuuRs/IaAdLA2gIR0CkfLGyX2M9dX2UKGgGR7+/2PDHfdhzaAdLAmgIR0CkfLsEq2BrdX2UKGgGR7/UT+NtIkJKaAdLBGgIR0CkfHplSS/1dX2UKGgGR7/LVoYekpI+aAdLA2gIR0CkfD2Bz3h5dX2UKGgGR7/S7P6be/HpaAdLA2gIR0CkfAE12q1gdX2UKGgGR7/DH8TBZZB+aAdLAmgIR0CkfILBCUosdX2UKGgGR7/Kr9VFQVKxaAdLA2gIR0CkfEmYBvJjdX2UKGgGR7/SjABT4tYkaAdLA2gIR0CkfA0/wAlwdX2UKGgGR7/QPfsNUfgaaAdLBGgIR0CkfMtjCpFTdX2UKGgGR7/Qi3G4qgAZaAdLA2gIR0CkfJDjBEa3dX2UKGgGR7+2DdxhlUZOaAdLAmgIR0CkfBeMhougdX2UKGgGR7/EvIOpbUw0aAdLAmgIR0CkfNW1twaSdX2UKGgGR7/GbcXWOIZZaAdLA2gIR0CkfFgElme2dX2UKGgGR7+5MTN+so2GaAdLAmgIR0CkfB9MTN+tdX2UKGgGR7/EslLOAy2yaAdLAmgIR0CkfF+E7GNrdX2UKGgGR7+eXeFcpsoEaAdLAWgIR0CkfCMjFAE/dX2UKGgGR7/HvZRKpT/AaAdLA2gIR0CkfOFMh5gPdX2UKGgGR7/aR3eN1hb4aAdLBGgIR0CkfKDKYAsDdX2UKGgGR7+8d0aIeo1laAdLAmgIR0CkfK9uxbB5dX2UKGgGR7/Q8OTaCcwyaAdLA2gIR0CkfPj28IzFdX2UKGgGR7/Szf779AHFaAdLBGgIR0CkfH1wxWT5dX2UKGgGR7/W92X9itq6aAdLBGgIR0CkfEHHmzSkdX2UKGgGR7/Nu3trsSkCaAdLA2gIR0CkfMbEP1+RdX2UKGgGR7/MvL5hz/6waAdLA2gIR0CkfREIX0oSdX2UKGgGR7/KBSUC7sfJaAdLA2gIR0CkfJTIV/MGdX2UKGgGR7/Jy6MBIWgwaAdLA2gIR0CkfFkTYdyUdX2UKGgGR7+yqjrRjSXuaAdLAmgIR0CkfR80UGmldX2UKGgGR7/Xe8f3evZAaAdLBGgIR0CkfOWWpqASdX2UKGgGR7/J9Dx9XtBwaAdLA2gIR0CkfG1sk6cRdX2UKGgGR7/MZ1FH8TBZaAdLBGgIR0CkfLBrvb48dX2UKGgGR7+cqjJuEVWTaAdLAWgIR0CkfLnp8neBdX2UKGgGR7/YZZSvTw2EaAdLBGgIR0CkfT0j9n9OdX2UKGgGR7/G7yxzJZGKaAdLA2gIR0CkfP5Aprk9dX2UKGgGR7/RANG3F1jiaAdLA2gIR0CkfIZFocrBdX2UKGgGR7/D1oQFs54oaAdLAmgIR0CkfMjSgGr0dX2UKGgGR7+5lQMx46fbaAdLAmgIR0CkfJNga3qidX2UKGgGR7/NaNdZ7ojfaAdLA2gIR0CkfRL9deIEdX2UKGgGR7/BurIYFaB7aAdLAmgIR0CkfNanzg/DdX2UKGgGR7+VvuPV/c33aAdLAWgIR0CkfJr30wrUdX2UKGgGR7/XKGtZFG5MaAdLBGgIR0CkfV0I9kjHdX2UKGgGR7/ETvAoG6f8aAdLAmgIR0CkfWqKYRdydX2UKGgGR7/TP8yeqaPTaAdLA2gIR0CkfSqpLmITdX2UKGgGR7/N8Sf16E8JaAdLA2gIR0CkfLJx//eddX2UKGgGR7/SzPKMefZmaAdLBWgIR0CkfPxRMvh7dX2UKGgGR7/NS75Ec81XaAdLA2gIR0CkfYKlHjIadX2UKGgGR7/Q2AG0NSZSaAdLA2gIR0CkfULCWNWEdX2UKGgGR7+cQ2/BWPtEaAdLAWgIR0CkfQcMNMGpdX2UKGgGR7/Nr56+nIhhaAdLA2gIR0CkfMtbTtsvdX2UKGgGR7+nIyTINmUXaAdLAWgIR0CkfUqUeMhpdX2UKGgGR7/QTRplBhQWaAdLA2gIR0CkfZeM6zVudX2UKGgGR7+7thNM495haAdLAmgIR0CkfVeMqBmPdX2UKGgGR7/TJjlPrOZ9aAdLA2gIR0CkfRtLDhtMdX2UKGgGR7/UFiKBNEgGaAdLA2gIR0CkfN/3N9pidX2UKGgGR7+8Uvf0mMOxaAdLAmgIR0CkfO9nTRYzdX2UKGgGR7/Se2/i5uqFaAdLA2gIR0CkfW4bjtG/dX2UKGgGR7/RlUZNwiqyaAdLA2gIR0CkfTG/FirldX2UKGgGR7/WzOX3QD3eaAdLBGgIR0CkfbUDU3GXdX2UKGgGR7/GxJNCZ4OdaAdLA2gIR0CkfYJjMFEBdX2UKGgGR7/KPy08eS0TaAdLA2gIR0CkfUaN2ki2dX2UKGgGR7/XxZ+x4Y78aAdLBGgIR0CkfQt+b3GodWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:770251972cadb489ab4b6c79c50634504159c26b2d96672b47601f4cfaa33212
|
3 |
+
size 44734
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4882b72b4ad526d42c6016605b84ce436e71d0737e761f05139cc6e0fdf9bf4c
|
3 |
+
size 46014
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f976e5f57e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f976e5fc940>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697262395920391304, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAnSDDvxn0fL/it5q/kwSaPn2T0ru8Q+Q+kwSaPn2T0ru8Q+Q+kwSaPn2T0ru8Q+Q+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/qC2vyvtB7+yqAG/i2YPvrvpCb+BUD2+zdWCP+H+Qr5AyMu9olf1PoMWSb8BDmE/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACdIMO/GfR8v+K3mr8swZm/i46QPaYciL6TBJo+fZPSu7xD5D7MSf0+upfKu8Ccyj6TBJo+fZPSu7xD5D7MSf0+upfKu8Ccyj6TBJo+fZPSu7xD5D7MSf0+upfKu8Ccyj6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-1.5244328 -0.98809963 -1.2087367 ]\n [ 0.30081615 -0.00642627 0.44582927]\n [ 0.30081615 -0.00642627 0.44582927]\n [ 0.30081615 -0.00642627 0.44582927]]", "desired_goal": "[[-1.4267881 -0.53096265 -0.50648034]\n [-0.14003961 -0.5387227 -0.18487741]\n [ 1.0221497 -0.19042541 -0.09950304]\n [ 0.4791842 -0.78549975 0.87911993]]", "observation": "[[-1.5244328 -0.98809963 -1.2087367 -1.2012076 0.07058438 -0.26584357]\n [ 0.30081615 -0.00642627 0.44582927 0.49470365 -0.00618264 0.39572716]\n [ 0.30081615 -0.00642627 0.44582927 0.49470365 -0.00618264 0.39572716]\n [ 0.30081615 -0.00642627 0.44582927 0.49470365 -0.00618264 0.39572716]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8BzhvRmx1r1Qz/U9+73sPYK4w71Lcyw8YPXgvYWWcrxwS5E+VC8bPctwYD1jSyo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.10991848 -0.10482997 0.12002432]\n [ 0.11559673 -0.09556676 0.01052553]\n [-0.10984302 -0.01480639 0.28377867]\n [ 0.03788693 0.05479507 0.1663032 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9UCdSVGCqaMAWyUSwOMAXSUR0Cke3ewcHW0dX2UKGgGR7/CUN8VpKzzaAdLAmgIR0Cke7fhuO0cdX2UKGgGR7/chPCVKPGRaAdLBWgIR0CkfDnIhhYvdX2UKGgGR7/Co73fyf+TaAdLAmgIR0Cke3/Aj6eodX2UKGgGR7/NAUtZmqYJaAdLA2gIR0Cke/1JcxCZdX2UKGgGR7/RI0qH446waAdLA2gIR0CkfEfgaWHDdX2UKGgGR7/W90ihWYF8aAdLBGgIR0Cke8pv5xiodX2UKGgGR7/Sb3oLXtjTaAdLA2gIR0Cke44bS7XhdX2UKGgGR7/U6CUX531SaAdLA2gIR0CkfAu5J9RadX2UKGgGR7/MANoakyk9aAdLA2gIR0CkfFQGnn+ydX2UKGgGR7/JTbWVeKKpaAdLA2gIR0Cke9ZeAuqWdX2UKGgGR7/RG21D0DlpaAdLA2gIR0CkfBfKp1ifdX2UKGgGR7/RWxhUipvQaAdLBGgIR0Cke55nlGPQdX2UKGgGR7+ffbblA/s3aAdLAWgIR0CkfB3kgfU4dX2UKGgGR7+6G21D0DlpaAdLAmgIR0Cke+D1f3N+dX2UKGgGR7/PddE9dNWVaAdLA2gIR0CkfGLD63y7dX2UKGgGR7/CDcuanaWYaAdLAmgIR0Cke6jJdSl4dX2UKGgGR7/AFHrhR64UaAdLAmgIR0CkfCZJsfq5dX2UKGgGR7/AQEIPbwjMaAdLAmgIR0CkfGsfigkDdX2UKGgGR7/Q9XtBv73xaAdLA2gIR0Cke+1iONo8dX2UKGgGR7/T4AS39aUzaAdLA2gIR0Cke7SrHU+cdX2UKGgGR7+5R8+iaiK0aAdLAmgIR0CkfHTundftdX2UKGgGR7/JzbvgFX7taAdLA2gIR0CkfDRp+MIedX2UKGgGR7+efVZs9B8haAdLAWgIR0CkfDhV+7UYdX2UKGgGR7/Gdmxt52QoaAdLA2gIR0Cke/upKjBVdX2UKGgGR7+0ZHd43WFwaAdLAmgIR0Cke7+SbH6udX2UKGgGR7/A9zOoo/iYaAdLAmgIR0CkfH8GTs6adX2UKGgGR7/BOBUaQ3glaAdLAmgIR0CkfEIphF3IdX2UKGgGR7/LpW3jMmngaAdLA2gIR0CkfI1f3N9qdX2UKGgGR7+w2606YE4eaAdLAmgIR0CkfEzt9hJAdX2UKGgGR7/WjXnQpnYhaAdLBGgIR0CkfBAbyYoidX2UKGgGR7/TbQTmGM4taAdLBWgIR0Cke9hrFfiQdX2UKGgGR7/CLFXJYDDCaAdLAmgIR0CkfJaakRBedX2UKGgGR7/JzT4L1EmZaAdLA2gIR0CkfFoAwPAgdX2UKGgGR7/N4bCJoCdSaAdLA2gIR0CkfB0KRdQgdX2UKGgGR7+xme18b70naAdLAmgIR0Cke+C5d4VzdX2UKGgGR7/QrAP/aQFLaAdLA2gIR0CkfKUvoNd7dX2UKGgGR7/RNyYG+sYEaAdLA2gIR0CkfGi4z7/GdX2UKGgGR7/ZBCUornTzaAdLBGgIR0CkfC/giu+zdX2UKGgGR7/g7tzCDVYqaAdLBGgIR0Cke/OOCGvfdX2UKGgGR7/IUpuuRs/IaAdLA2gIR0CkfLGyX2M9dX2UKGgGR7+/2PDHfdhzaAdLAmgIR0CkfLsEq2BrdX2UKGgGR7/UT+NtIkJKaAdLBGgIR0CkfHplSS/1dX2UKGgGR7/LVoYekpI+aAdLA2gIR0CkfD2Bz3h5dX2UKGgGR7/S7P6be/HpaAdLA2gIR0CkfAE12q1gdX2UKGgGR7/DH8TBZZB+aAdLAmgIR0CkfILBCUosdX2UKGgGR7/Kr9VFQVKxaAdLA2gIR0CkfEmYBvJjdX2UKGgGR7/SjABT4tYkaAdLA2gIR0CkfA0/wAlwdX2UKGgGR7/QPfsNUfgaaAdLBGgIR0CkfMtjCpFTdX2UKGgGR7/Qi3G4qgAZaAdLA2gIR0CkfJDjBEa3dX2UKGgGR7+2DdxhlUZOaAdLAmgIR0CkfBeMhougdX2UKGgGR7/EvIOpbUw0aAdLAmgIR0CkfNW1twaSdX2UKGgGR7/GbcXWOIZZaAdLA2gIR0CkfFgElme2dX2UKGgGR7+5MTN+so2GaAdLAmgIR0CkfB9MTN+tdX2UKGgGR7/EslLOAy2yaAdLAmgIR0CkfF+E7GNrdX2UKGgGR7+eXeFcpsoEaAdLAWgIR0CkfCMjFAE/dX2UKGgGR7/HvZRKpT/AaAdLA2gIR0CkfOFMh5gPdX2UKGgGR7/aR3eN1hb4aAdLBGgIR0CkfKDKYAsDdX2UKGgGR7+8d0aIeo1laAdLAmgIR0CkfK9uxbB5dX2UKGgGR7/Q8OTaCcwyaAdLA2gIR0CkfPj28IzFdX2UKGgGR7/Szf779AHFaAdLBGgIR0CkfH1wxWT5dX2UKGgGR7/W92X9itq6aAdLBGgIR0CkfEHHmzSkdX2UKGgGR7/Nu3trsSkCaAdLA2gIR0CkfMbEP1+RdX2UKGgGR7/MvL5hz/6waAdLA2gIR0CkfREIX0oSdX2UKGgGR7/KBSUC7sfJaAdLA2gIR0CkfJTIV/MGdX2UKGgGR7/Jy6MBIWgwaAdLA2gIR0CkfFkTYdyUdX2UKGgGR7+yqjrRjSXuaAdLAmgIR0CkfR80UGmldX2UKGgGR7/Xe8f3evZAaAdLBGgIR0CkfOWWpqASdX2UKGgGR7/J9Dx9XtBwaAdLA2gIR0CkfG1sk6cRdX2UKGgGR7/MZ1FH8TBZaAdLBGgIR0CkfLBrvb48dX2UKGgGR7+cqjJuEVWTaAdLAWgIR0CkfLnp8neBdX2UKGgGR7/YZZSvTw2EaAdLBGgIR0CkfT0j9n9OdX2UKGgGR7/G7yxzJZGKaAdLA2gIR0CkfP5Aprk9dX2UKGgGR7/RANG3F1jiaAdLA2gIR0CkfIZFocrBdX2UKGgGR7/D1oQFs54oaAdLAmgIR0CkfMjSgGr0dX2UKGgGR7+5lQMx46fbaAdLAmgIR0CkfJNga3qidX2UKGgGR7/NaNdZ7ojfaAdLA2gIR0CkfRL9deIEdX2UKGgGR7/BurIYFaB7aAdLAmgIR0CkfNanzg/DdX2UKGgGR7+VvuPV/c33aAdLAWgIR0CkfJr30wrUdX2UKGgGR7/XKGtZFG5MaAdLBGgIR0CkfV0I9kjHdX2UKGgGR7/ETvAoG6f8aAdLAmgIR0CkfWqKYRdydX2UKGgGR7/TP8yeqaPTaAdLA2gIR0CkfSqpLmITdX2UKGgGR7/N8Sf16E8JaAdLA2gIR0CkfLJx//eddX2UKGgGR7/SzPKMefZmaAdLBWgIR0CkfPxRMvh7dX2UKGgGR7/NS75Ec81XaAdLA2gIR0CkfYKlHjIadX2UKGgGR7/Q2AG0NSZSaAdLA2gIR0CkfULCWNWEdX2UKGgGR7+cQ2/BWPtEaAdLAWgIR0CkfQcMNMGpdX2UKGgGR7/Nr56+nIhhaAdLA2gIR0CkfMtbTtsvdX2UKGgGR7+nIyTINmUXaAdLAWgIR0CkfUqUeMhpdX2UKGgGR7/QTRplBhQWaAdLA2gIR0CkfZeM6zVudX2UKGgGR7+7thNM495haAdLAmgIR0CkfVeMqBmPdX2UKGgGR7/TJjlPrOZ9aAdLA2gIR0CkfRtLDhtMdX2UKGgGR7/UFiKBNEgGaAdLA2gIR0CkfN/3N9pidX2UKGgGR7+8Uvf0mMOxaAdLAmgIR0CkfO9nTRYzdX2UKGgGR7/Se2/i5uqFaAdLA2gIR0CkfW4bjtG/dX2UKGgGR7/RlUZNwiqyaAdLA2gIR0CkfTG/FirldX2UKGgGR7/WzOX3QD3eaAdLBGgIR0CkfbUDU3GXdX2UKGgGR7/GxJNCZ4OdaAdLA2gIR0CkfYJjMFEBdX2UKGgGR7/KPy08eS0TaAdLA2gIR0CkfUaN2ki2dX2UKGgGR7/XxZ+x4Y78aAdLBGgIR0CkfQt+b3GodWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (691 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.22783576622605323, "std_reward": 0.05684794182575448, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-14T06:34:02.189949"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8035461afc471c40a81f00634188064c0940f8d935250f6f3bac7456aa091f6e
|
3 |
+
size 2623
|