dada22231 commited on
Commit
d582527
·
verified ·
1 Parent(s): ba570c4

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +67 -15
README.md CHANGED
@@ -1,6 +1,5 @@
1
  ---
2
- library_name: diffusers
3
- license: other
4
  base_model: OnomaAIResearch/Illustrious-xl-early-release-v0
5
  tags:
6
  - stable-diffusion-xl
@@ -8,25 +7,78 @@ tags:
8
  - text-to-image
9
  - diffusers
10
  - lora
 
 
11
  ---
12
 
13
- # SDXL LoRA Model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
  ## Usage
16
 
17
- from diffusers import DiffusionPipeline
18
- import torch
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
- pipe = DiffusionPipeline.from_pretrained(
21
- "OnomaAIResearch/Illustrious-xl-early-release-v0",
22
- torch_dtype=torch.float16
23
- ).to("cuda")
24
 
25
- pipe.load_lora_weights("dada22231/ba2b5d89-3688-448e-9197-d9fd377c4f5a")
26
 
27
- image = pipe(
28
- "masterpiece, best quality, 1girl",
29
- num_inference_steps=30,
30
- guidance_scale=7.5
31
- ).images[0]
32
 
 
 
1
  ---
2
+ license: mit
 
3
  base_model: OnomaAIResearch/Illustrious-xl-early-release-v0
4
  tags:
5
  - stable-diffusion-xl
 
7
  - text-to-image
8
  - diffusers
9
  - lora
10
+ - gradients-on-demand
11
+ inference: true
12
  ---
13
 
14
+ # LoRA Model for Illustrious-xl-early-release-v0
15
+
16
+ This is a LoRA (Low-Rank Adaptation) model trained on custom dataset.
17
+
18
+ ## Model Details
19
+
20
+ - **Base Model**: OnomaAIResearch/Illustrious-xl-early-release-v0
21
+ - **LoRA Rank**: 128
22
+ - **LoRA Alpha**: 128
23
+ - **Training Framework**: Kohya SS
24
+ - **Precision**: bfloat16
25
+
26
+ ## Training Configuration
27
+
28
+ - **Learning Rate**: 2e-5
29
+ - **Batch Size**: 8
30
+ - **Epochs**: 50
31
+ - **Optimizer**: AdamW8Bit
32
+ - **LR Scheduler**: Cosine with Restarts
33
+ - **Resolution**: 1024x1024
34
 
35
  ## Usage
36
 
37
+ You can use this LoRA with any SDXL-compatible interface:
38
+
39
+ ### With Diffusers
40
+
41
+ ```python
42
+ from diffusers import DiffusionPipeline
43
+ import torch
44
+
45
+ # Load base model
46
+ pipe = DiffusionPipeline.from_pretrained(
47
+ "OnomaAIResearch/Illustrious-xl-early-release-v0",
48
+ torch_dtype=torch.float16,
49
+ variant="fp16",
50
+ use_safetensors=True
51
+ )
52
+ pipe.to("cuda")
53
+
54
+ # Load LoRA weights
55
+ pipe.load_lora_weights("dada22231/ba2b5d89-3688-448e-9197-d9fd377c4f5a")
56
+
57
+ # Generate image
58
+ prompt = "your prompt here, lora style"
59
+ image = pipe(
60
+ prompt,
61
+ num_inference_steps=20,
62
+ guidance_scale=7.5,
63
+ ).images[0]
64
+ ```
65
+
66
+ ### With ComfyUI
67
+
68
+ 1. Download the .safetensors file
69
+ 2. Place it in `ComfyUI/models/loras/`
70
+ 3. Use the "Load LoRA" node in your workflow
71
+
72
+ ### With Automatic1111
73
+
74
+ 1. Download the .safetensors file
75
+ 2. Place it in `stable-diffusion-webui/models/Lora/`
76
+ 3. Use `<lora:ba2b5d89-3688-448e-9197-d9fd377c4f5a:1>` in your prompt
77
 
78
+ ## Training Data
 
 
 
79
 
80
+ This model was trained on a custom dataset as part of the Gradients on Demand subnet.
81
 
82
+ ## License
 
 
 
 
83
 
84
+ This model is licensed under the MIT License.