--- license: mit base_model: OnomaAIResearch/Illustrious-xl-early-release-v0 tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - gradients-on-demand inference: true --- # LoRA Model for Illustrious-xl-early-release-v0 This is a LoRA (Low-Rank Adaptation) model trained on custom dataset. ## Model Details - **Base Model**: OnomaAIResearch/Illustrious-xl-early-release-v0 - **LoRA Rank**: 128 - **LoRA Alpha**: 128 - **Training Framework**: Kohya SS - **Precision**: bfloat16 ## Training Configuration - **Learning Rate**: 2e-5 - **Batch Size**: 8 - **Epochs**: 50 - **Optimizer**: AdamW8Bit - **LR Scheduler**: Cosine with Restarts - **Resolution**: 1024x1024 ## Usage You can use this LoRA with any SDXL-compatible interface: ### With Diffusers ```python from diffusers import DiffusionPipeline import torch # Load base model pipe = DiffusionPipeline.from_pretrained( "OnomaAIResearch/Illustrious-xl-early-release-v0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipe.to("cuda") # Load LoRA weights pipe.load_lora_weights("dada22231/ba2b5d89-3688-448e-9197-d9fd377c4f5a") # Generate image prompt = "your prompt here, lora style" image = pipe( prompt, num_inference_steps=20, guidance_scale=7.5, ).images[0] ``` ### With ComfyUI 1. Download the .safetensors file 2. Place it in `ComfyUI/models/loras/` 3. Use the "Load LoRA" node in your workflow ### With Automatic1111 1. Download the .safetensors file 2. Place it in `stable-diffusion-webui/models/Lora/` 3. Use `` in your prompt ## Training Data This model was trained on a custom dataset as part of the Gradients on Demand subnet. ## License This model is licensed under the MIT License.