File size: 111,212 Bytes
0079cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
import math
from typing import Any, Optional
import torch
import torch.onnx.operators
from torch import nn, Tensor
import torch.nn as nn
from typing import Optional, Dict, List, Any, Tuple
import torch.nn as nn
import torch.nn.functional as F
import torch
import sys
import torch.distributed as dist
import uuid
from dataclasses import dataclass, field, asdict
from transformers.modeling_utils import PreTrainedModel
from transformers import AutoConfig, AutoModel, AutoModelForSequenceClassification
from .configuration_afrolid import AfroLidConfig



def quant_noise(module, p, block_size):
    """

    Wraps modules and applies quantization noise to the weights for

    subsequent quantization with Iterative Product Quantization as

    described in "Training with Quantization Noise for Extreme Model Compression"



    Args:

        - module: nn.Module

        - p: amount of Quantization Noise

        - block_size: size of the blocks for subsequent quantization with iPQ



    Remarks:

        - Module weights must have the right sizes wrt the block size

        - Only Linear, Embedding and Conv2d modules are supported for the moment

        - For more detail on how to quantize by blocks with convolutional weights,

          see "And the Bit Goes Down: Revisiting the Quantization of Neural Networks"

        - We implement the simplest form of noise here as stated in the paper

          which consists in randomly dropping blocks

    """

    # if no quantization noise, don't register hook
    if p <= 0:
        return module

    # supported modules
    assert isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d))

    # test whether module.weight has the right sizes wrt block_size
    is_conv = module.weight.ndim == 4

    # 2D matrix
    if not is_conv:
        assert (
            module.weight.size(1) % block_size == 0
        ), "Input features must be a multiple of block sizes"

    # 4D matrix
    else:
        # 1x1 convolutions
        if module.kernel_size == (1, 1):
            assert (
                module.in_channels % block_size == 0
            ), "Input channels must be a multiple of block sizes"
        # regular convolutions
        else:
            k = module.kernel_size[0] * module.kernel_size[1]
            assert k % block_size == 0, "Kernel size must be a multiple of block size"

    def _forward_pre_hook(mod, input):
        # no noise for evaluation
        if mod.training:
            if not is_conv:
                # gather weight and sizes
                weight = mod.weight
                in_features = weight.size(1)
                out_features = weight.size(0)

                # split weight matrix into blocks and randomly drop selected blocks
                mask = torch.zeros(
                    in_features // block_size * out_features, device=weight.device
                )
                mask.bernoulli_(p)
                mask = mask.repeat_interleave(block_size, -1).view(-1, in_features)

            else:
                # gather weight and sizes
                weight = mod.weight
                in_channels = mod.in_channels
                out_channels = mod.out_channels

                # split weight matrix into blocks and randomly drop selected blocks
                if mod.kernel_size == (1, 1):
                    mask = torch.zeros(
                        int(in_channels // block_size * out_channels),
                        device=weight.device,
                    )
                    mask.bernoulli_(p)
                    mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels)
                else:
                    mask = torch.zeros(
                        weight.size(0), weight.size(1), device=weight.device
                    )
                    mask.bernoulli_(p)
                    mask = (
                        mask.unsqueeze(2)
                        .unsqueeze(3)
                        .repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1])
                    )

            # scale weights and apply mask
            mask = mask.to(
                torch.bool
            )  # x.bool() is not currently supported in TorchScript
            s = 1 / (1 - p)
            mod.weight.data = s * weight.masked_fill(mask, 0)

    module.register_forward_pre_hook(_forward_pre_hook)
    return module

def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True, export=False):
    # if torch.jit.is_scripting() or torch.jit.is_tracing():
    #     export = True
    # if not export and torch.cuda.is_available() and has_fused_layernorm:
    #     return FusedLayerNorm(normalized_shape, eps, elementwise_affine)
    return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine)

class LayerDropModuleList(nn.ModuleList):
    """

    A LayerDrop implementation based on :class:`torch.nn.ModuleList`.



    We refresh the choice of which layers to drop every time we iterate

    over the LayerDropModuleList instance. During evaluation we always

    iterate over all layers.



    Usage::



        layers = LayerDropList(p=0.5, modules=[layer1, layer2, layer3])

        for layer in layers:  # this might iterate over layers 1 and 3

            x = layer(x)

        for layer in layers:  # this might iterate over all layers

            x = layer(x)

        for layer in layers:  # this might not iterate over any layers

            x = layer(x)



    Args:

        p (float): probability of dropping out each layer

        modules (iterable, optional): an iterable of modules to add

    """

    def __init__(self, p, modules=None):
        super().__init__(modules)
        self.p = p

    def __iter__(self):
        dropout_probs = torch.empty(len(self)).uniform_()
        for i, m in enumerate(super().__iter__()):
            if not self.training or (dropout_probs[i] > self.p):
                yield m

from typing import List, Callable
from typing import Dict
import warnings

def gelu_accurate(x):
    if not hasattr(gelu_accurate, "_a"):
        gelu_accurate._a = math.sqrt(2 / math.pi)
    return (
        0.5 * x * (1 + torch.tanh(gelu_accurate._a * (x + 0.044715 * torch.pow(x, 3))))
    )

def deprecation_warning(message, stacklevel=3):
    # don't use DeprecationWarning, since it's ignored by default
    warnings.warn(message, stacklevel=stacklevel)

def gelu(x: torch.Tensor) -> torch.Tensor:
    return torch.nn.functional.gelu(x.float()).type_as(x)

def relu_squared(x: torch.Tensor):
    return F.relu(x).pow(2)

def get_activation_fn(activation: str) -> Callable:
    """Returns the activation function corresponding to `activation`"""

    if activation == "relu":
        return F.relu
    elif activation == "relu_squared":
        return relu_squared
    elif activation == "gelu":
        return gelu
    elif activation == "gelu_fast":
        deprecation_warning(
            "--activation-fn=gelu_fast has been renamed to gelu_accurate"
        )
        return gelu_accurate
    elif activation == "gelu_accurate":
        return gelu_accurate
    elif activation == "tanh":
        return torch.tanh
    elif activation == "linear":
        return lambda x: x
    elif activation == "swish":
        return torch.nn.SiLU
    else:
        raise RuntimeError("--activation-fn {} not supported".format(activation))


class FairseqDropout(nn.Module):
    def __init__(self, p, module_name=None):
        super().__init__()
        self.p = p
        self.module_name = module_name
        self.apply_during_inference = False

    def forward(self, x, inplace: bool = False):
        if self.p > 0 and (self.training or self.apply_during_inference):
            return F.dropout(x, p=self.p, training=True, inplace=inplace)
        else:
            return x


class TransformerEncoderLayerBase(nn.Module):

    """Encoder layer block.



    In the original paper each operation (multi-head attention or FFN) is

    postprocessed with: `dropout -> add residual -> layernorm`. In the

    tensor2tensor code they suggest that learning is more robust when

    preprocessing each layer with layernorm and postprocessing with:

    `dropout -> add residual`. We default to the approach in the paper, but the

    tensor2tensor approach can be enabled by setting

    *cfg.encoder.normalize_before* to ``True``.



    Args:

        args (argparse.Namespace): parsed command-line arguments

    """

    def __init__(self, cfg, return_fc=False):
        super().__init__()
        self.cfg = cfg
        self.return_fc = return_fc
        self.embed_dim = cfg.encoder.embed_dim
        self.quant_noise = cfg.quant_noise.pq
        self.quant_noise_block_size = cfg.quant_noise.pq_block_size
        self.self_attn = self.build_self_attention(self.embed_dim, cfg)
        self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=cfg.export)
        self.dropout_module = FairseqDropout(
            cfg.dropout, module_name=self.__class__.__name__
        )
        self.activation_fn = get_activation_fn(activation=cfg.activation_fn)
        activation_dropout_p = cfg.activation_dropout
        if activation_dropout_p == 0:
            # for backwards compatibility with models that use cfg.relu_dropout
            activation_dropout_p = cfg.relu_dropout or 0
        self.activation_dropout_module = FairseqDropout(
            float(activation_dropout_p), module_name=self.__class__.__name__
        )
        self.normalize_before = cfg.encoder.normalize_before
        self.fc1 = self.build_fc1(
            self.embed_dim,
            cfg.encoder.ffn_embed_dim,
            self.quant_noise,
            self.quant_noise_block_size,
        )
        self.fc2 = self.build_fc2(
            cfg.encoder.ffn_embed_dim,
            self.embed_dim,
            self.quant_noise,
            self.quant_noise_block_size,
        )

        self.final_layer_norm = LayerNorm(self.embed_dim, export=cfg.export)

        self.num_heads = cfg.encoder.attention_heads
        self.load_to_BT = False
        self.ever_training = False
        # For BT, we need continuous mem
        self.in_proj_weight = torch.nn.Parameter(
            torch.zeros(
                self.self_attn.q_proj.weight.shape[0] * 3,
                self.self_attn.q_proj.weight.shape[1],
            )
        )
        self.in_proj_bias = torch.nn.Parameter(
            torch.zeros(self.self_attn.q_proj.bias.shape[0] * 3)
        )
        self.out_proj_weight = torch.nn.Parameter(
            torch.zeros(self.self_attn.out_proj.weight.shape)
        )
        self.out_proj_bias = torch.nn.Parameter(
            torch.zeros(self.self_attn.out_proj.bias.shape)
        )
        self.fc1_weight = torch.nn.Parameter(torch.zeros(self.fc1.weight.shape))
        self.fc1_bias = torch.nn.Parameter(torch.zeros(self.fc1.bias.shape))
        self.fc2_weight = torch.nn.Parameter(torch.zeros(self.fc2.weight.shape))
        self.fc2_bias = torch.nn.Parameter(torch.zeros(self.fc2.bias.shape))

        if (
            self.activation_fn is torch.nn.functional.relu
            or isinstance(self.activation_fn, torch.nn.ReLU)
            or self.activation_fn == "relu"
        ):
            self.activation_relu_or_gelu = 1
        elif (
            self.activation_fn is torch.nn.functional.gelu
            or isinstance(self.activation_fn, torch.nn.GELU)
            or self.activation_fn == "gelu"
        ):
            self.activation_relu_or_gelu = 2
        else:
            self.activation_relu_or_gelu = 0
        # Batch first can not be justified but needs user to make sure
        self.can_use_fastpath = None
        self.cfg_checkpoint_activations = self.cfg.checkpoint_activations
        # torch version check
        # make sure BT version is >=1.12.0
        self.BT_version = False
        if "fb" in torch.__version__:
            self.BT_version = True
        else:
            if "+" in torch.__version__:
                self.torch_version = torch.__version__.split("+")[0]
            else:
                self.torch_version = torch.__version__

            self.torch_version = self.torch_version.split(".")
            self.int_version = (
                int(self.torch_version[0]) * 1000
                + int(self.torch_version[1]) * 10
                + int(self.torch_version[2])
            )
            if len(self.torch_version) == 3:
                if self.int_version >= 1120:
                    self.BT_version = True
            elif len(self.torch_version) == 4:
                if self.int_version >= 1130:
                    self.BT_version = True

    def _load_from_state_dict(

        self,

        state_dict,

        prefix,

        local_metadata,

        strict,

        missing_keys,

        unexpected_keys,

        error_msgs,

    ):
        self.load_to_BT = True

        old_name = prefix + "self_attn."
        q_proj_weight = state_dict[old_name + "q_proj.weight"]
        k_proj_weight = state_dict[old_name + "k_proj.weight"]
        v_proj_weight = state_dict[old_name + "v_proj.weight"]
        q_proj_bias = state_dict[old_name + "q_proj.bias"]
        k_proj_bias = state_dict[old_name + "k_proj.bias"]
        v_proj_bias = state_dict[old_name + "v_proj.bias"]

        new_name = prefix
        state_dict[new_name + "in_proj_weight"] = torch.cat(
            (q_proj_weight, k_proj_weight, v_proj_weight), dim=0
        )
        state_dict[new_name + "in_proj_bias"] = torch.cat(
            (q_proj_bias, k_proj_bias, v_proj_bias), dim=0
        )
        state_dict[new_name + "out_proj_weight"] = state_dict[
            old_name + "out_proj.weight"
        ]
        state_dict[new_name + "out_proj_bias"] = state_dict[old_name + "out_proj.bias"]
        state_dict[new_name + "fc1_weight"] = state_dict[prefix + "fc1.weight"]
        state_dict[new_name + "fc1_bias"] = state_dict[prefix + "fc1.bias"]
        state_dict[new_name + "fc2_weight"] = state_dict[prefix + "fc2.weight"]
        state_dict[new_name + "fc2_bias"] = state_dict[prefix + "fc2.bias"]
        super(TransformerEncoderLayerBase, self)._load_from_state_dict(
            state_dict,
            prefix,
            local_metadata,
            strict,
            missing_keys,
            unexpected_keys,
            error_msgs,
        )

    def build_fc1(self, input_dim, output_dim, q_noise, qn_block_size):
        return quant_noise(
            nn.Linear(input_dim, output_dim), p=q_noise, block_size=qn_block_size
        )

    def build_fc2(self, input_dim, output_dim, q_noise, qn_block_size):
        return quant_noise(
            nn.Linear(input_dim, output_dim), p=q_noise, block_size=qn_block_size
        )

    def _get_fc_rank(self, remove_num: int) -> List[int]:
        f1_filter_param = []
        for i in range(self.fc1.out_features):
            f1_filter_param.append(
                torch.sum(torch.abs(self.fc1.weight[i]))
                + torch.sum(torch.abs(self.fc2.weight[:, i]))
                + torch.abs(self.fc1.bias[i])
            )
        return sorted(
            range(len(f1_filter_param)), key=lambda k: f1_filter_param[k], reverse=False
        )[0:remove_num]

    def _prune_fc_layer(self, remove_index: List[int]):
        new_fc1_weight = []
        new_fc1_bias = []
        for i in range(self.fc1.out_features):
            if i not in remove_index:
                new_fc1_weight.append(self.fc1.weight[i])
                new_fc1_bias.append(self.fc1.bias[i])

        new_fc1_weight = torch.stack(new_fc1_weight).detach()
        new_fc1_weight.requires_grad = True

        new_fc1_bias = torch.stack(new_fc1_bias).detach()
        new_fc1_bias.requires_grad = True

        self.fc1 = quant_noise(
            nn.Linear(self.fc1.in_features, self.fc1.out_features - len(remove_index)),
            p=self.quant_noise,
            block_size=self.quant_noise_block_size,
        )
        self.fc1.weight = torch.nn.Parameter(new_fc1_weight)
        self.fc1.bias = torch.nn.Parameter(new_fc1_bias)

        new_fc2_weight = []
        new_fc2_bias = []
        for i in range(self.fc2.in_features):
            if i not in remove_index:
                new_fc2_weight.append(self.fc2.weight[:, i])
        new_fc2_bias = self.fc2.bias.detach()

        new_fc2_weight = torch.stack(new_fc2_weight, dim=-1).detach()
        new_fc2_weight.requires_grad = True

        new_fc2_bias = self.fc2.bias.detach()
        new_fc2_bias.requires_grad = True

        self.fc2 = quant_noise(
            nn.Linear(self.fc2.in_features - len(remove_index), self.fc2.out_features),
            p=self.quant_noise,
            block_size=self.quant_noise_block_size,
        )
        self.fc2.weight = torch.nn.Parameter(new_fc2_weight)
        self.fc2.bias = torch.nn.Parameter(new_fc2_bias)

    def build_self_attention(self, embed_dim, cfg):
        return MultiheadAttention(
            embed_dim,
            cfg.encoder.attention_heads,
            dropout=cfg.attention_dropout,
            self_attention=True,
            q_noise=self.quant_noise,
            qn_block_size=self.quant_noise_block_size,
            xformers_att_config=cfg.encoder.xformers_att_config,
        )

    def residual_connection(self, x, residual):
        return residual + x

    def upgrade_state_dict_named(self, state_dict, name):
        """

        Rename layer norm states from `...layer_norms.0.weight` to

        `...self_attn_layer_norm.weight` and `...layer_norms.1.weight` to

        `...final_layer_norm.weight`

        """
        layer_norm_map = {"0": "self_attn_layer_norm", "1": "final_layer_norm"}
        for old, new in layer_norm_map.items():
            for m in ("weight", "bias"):
                k = "{}.layer_norms.{}.{}".format(name, old, m)
                if k in state_dict:
                    state_dict["{}.{}.{}".format(name, new, m)] = state_dict[k]
                    del state_dict[k]

    def forward(

        self,

        x,

        encoder_padding_mask: Optional[Tensor],

        attn_mask: Optional[Tensor] = None,

    ):
        """

        Args:

            x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`

            encoder_padding_mask (ByteTensor): binary ByteTensor of shape

                `(batch, seq_len)` where padding elements are indicated by ``1``.

            attn_mask (ByteTensor): binary tensor of shape `(tgt_len, src_len)`,

                where `tgt_len` is the length of output and `src_len` is the

                length of input, though here both are equal to `seq_len`.

                `attn_mask[tgt_i, src_j] = 1` means that when calculating the

                embedding for `tgt_i`, we exclude (mask out) `src_j`. This is

                useful for strided self-attention.



        Returns:

            encoded output of shape `(seq_len, batch, embed_dim)`

        """
        # anything in original attn_mask = 1, becomes -1e8
        # anything in original attn_mask = 0, becomes 0
        # Note that we cannot use -inf here, because at some edge cases,
        # the attention weight (before softmax) for some padded element in query
        # will become -inf, which results in NaN in model parameters

        if self.training:
            self.ever_training = True

        if (
            self.BT_version
            and x.dim() == 3
            and self.load_to_BT
            and not self.return_fc
            and self.can_use_fastpath
            and not self.training
            and not self.ever_training
            and not self.cfg_checkpoint_activations
        ):
            # assume is Batch first and nested tensor
            output = torch._transformer_encoder_layer_fwd(
                x,
                self.embed_dim,
                self.num_heads,
                self.in_proj_weight,
                self.in_proj_bias,
                self.out_proj_weight,
                self.out_proj_bias,
                self.activation_relu_or_gelu == 2,
                False,  # norm_first, currently not supported
                self.self_attn_layer_norm.eps,
                self.self_attn_layer_norm.weight,
                self.self_attn_layer_norm.bias,
                self.final_layer_norm.weight,
                self.final_layer_norm.bias,
                self.fc1_weight,
                self.fc1_bias,
                self.fc2_weight,
                self.fc2_bias,
                encoder_padding_mask if encoder_padding_mask is not None else attn_mask,
            )
            return output

        else:
            if attn_mask is not None:
                attn_mask = attn_mask.masked_fill(
                    attn_mask.to(torch.bool), -1e8 if x.dtype == torch.float32 else -1e4
                )

            residual = x
            if self.normalize_before:
                x = self.self_attn_layer_norm(x)
            x, _ = self.self_attn(
                query=x,
                key=x,
                value=x,
                key_padding_mask=encoder_padding_mask,
                need_weights=False,
                attn_mask=attn_mask,
            )
            x = self.dropout_module(x)
            x = self.residual_connection(x, residual)
            if not self.normalize_before:
                x = self.self_attn_layer_norm(x)

            residual = x
            if self.normalize_before:
                x = self.final_layer_norm(x)
            x = self.activation_fn(self.fc1(x))
            x = self.activation_dropout_module(x)
            x = self.fc2(x)

            fc_result = x

            x = self.dropout_module(x)
            x = self.residual_connection(x, residual)
            if not self.normalize_before:
                x = self.final_layer_norm(x)

            if self.return_fc and not torch.jit.is_scripting():
                return x, fc_result
            return x

def safe_getattr(obj, k, default=None):
    """Returns obj[k] if it exists and is not None, otherwise returns default."""
    from omegaconf import OmegaConf

    if OmegaConf.is_config(obj):
        return obj[k] if k in obj and obj[k] is not None else default

    return getattr(obj, k, default)

class TransformerDecoderLayerBase(nn.Module):
    """Decoder layer block.



    In the original paper each operation (multi-head attention, encoder

    attention or FFN) is postprocessed with: `dropout -> add residual ->

    layernorm`. In the tensor2tensor code they suggest that learning is more

    robust when preprocessing each layer with layernorm and postprocessing with:

    `dropout -> add residual`. We default to the approach in the paper, but the

    tensor2tensor approach can be enabled by setting

    *cfg.decoder.normalize_before* to ``True``.



    Args:

        args (argparse.Namespace): parsed command-line arguments

        no_encoder_attn (bool, optional): whether to attend to encoder outputs

            (default: False).

    """

    def __init__(

        self, cfg, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False

    ): #embed_dim, num_heads, ff_dim, dropout
        super().__init__()
        self.embed_dim = cfg.decoder.embed_dim
        self.dropout_module = FairseqDropout(
            cfg.dropout, module_name=self.__class__.__name__
        )
        self.quant_noise = cfg.quant_noise.pq
        self.quant_noise_block_size = cfg.quant_noise.pq_block_size

        self.cross_self_attention = cfg.cross_self_attention

        self.self_attn = self.build_self_attention(
            self.embed_dim,
            cfg,
            add_bias_kv=add_bias_kv,
            add_zero_attn=add_zero_attn,
        )
        self.attn_ln = (
            LayerNorm(self.embed_dim)
            if safe_getattr(cfg, "scale_attn", False)
            else None
        )
        self.nh = self.self_attn.num_heads
        self.head_dim = self.self_attn.head_dim
        scale_heads = safe_getattr(cfg, "scale_heads", False)
        self.c_attn = (
            nn.Parameter(torch.ones((self.nh,)), requires_grad=True)
            if scale_heads
            else None
        )

        self.activation_fn = get_activation_fn(activation=cfg.activation_fn)
        activation_dropout_p = cfg.activation_dropout
        if activation_dropout_p == 0:
            # for backwards compatibility with models that use cfg.relu_dropout
            activation_dropout_p = cfg.relu_dropout or 0
        self.activation_dropout_module = FairseqDropout(
            float(activation_dropout_p), module_name=self.__class__.__name__
        )
        self.normalize_before = cfg.decoder.normalize_before

        self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=cfg.export)

        if no_encoder_attn:
            self.encoder_attn = None
            self.encoder_attn_layer_norm = None
        else:
            self.encoder_attn = self.build_encoder_attention(self.embed_dim, cfg)
            self.encoder_attn_layer_norm = LayerNorm(self.embed_dim, export=cfg.export)

        self.ffn_layernorm = (
            LayerNorm(cfg.decoder.ffn_embed_dim)
            if safe_getattr(cfg, "scale_fc", False)
            else None
        )
        self.w_resid = (
            nn.Parameter(
                torch.ones(
                    self.embed_dim,
                ),
                requires_grad=True,
            )
            if safe_getattr(cfg, "scale_resids", False)
            else None
        )

        self.fc1 = self.build_fc1(
            self.embed_dim,
            cfg.decoder.ffn_embed_dim,
            self.quant_noise,
            self.quant_noise_block_size,
        )
        self.fc2 = self.build_fc2(
            cfg.decoder.ffn_embed_dim,
            self.embed_dim,
            self.quant_noise,
            self.quant_noise_block_size,
        )

        self.final_layer_norm = LayerNorm(self.embed_dim, export=cfg.export)
        self.need_attn = True

        self.onnx_trace = False

    def build_fc1(self, input_dim, output_dim, q_noise, qn_block_size):
        return quant_noise(nn.Linear(input_dim, output_dim), q_noise, qn_block_size)

    def build_fc2(self, input_dim, output_dim, q_noise, qn_block_size):
        return quant_noise(nn.Linear(input_dim, output_dim), q_noise, qn_block_size)

    def build_self_attention(

        self, embed_dim, cfg, add_bias_kv=False, add_zero_attn=False

    ):
        return MultiheadAttention(
            embed_dim,
            cfg.decoder.attention_heads,
            dropout=cfg.attention_dropout,
            add_bias_kv=add_bias_kv,
            add_zero_attn=add_zero_attn,
            self_attention=not cfg.cross_self_attention,
            q_noise=self.quant_noise,
            qn_block_size=self.quant_noise_block_size,
            xformers_att_config=cfg.decoder.xformers_att_config,
        )

    def build_encoder_attention(self, embed_dim, cfg):
        return MultiheadAttention(
            embed_dim,
            cfg.decoder.attention_heads,
            kdim=cfg.encoder.embed_dim,
            vdim=cfg.encoder.embed_dim,
            dropout=cfg.attention_dropout,
            encoder_decoder_attention=True,
            q_noise=self.quant_noise,
            qn_block_size=self.quant_noise_block_size,
            xformers_att_config=cfg.encoder.xformers_att_config,
        )

    def prepare_for_onnx_export_(self):
        self.onnx_trace = True

    def residual_connection(self, x, residual):
        return residual + x

    def forward(

        self,

        x,

        encoder_out: Optional[torch.Tensor] = None,

        encoder_padding_mask: Optional[torch.Tensor] = None,

        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,

        prev_self_attn_state: Optional[List[torch.Tensor]] = None,

        prev_attn_state: Optional[List[torch.Tensor]] = None,

        self_attn_mask: Optional[torch.Tensor] = None,

        self_attn_padding_mask: Optional[torch.Tensor] = None,

        need_attn: bool = False,

        need_head_weights: bool = False,

    ):
        """

        Args:

            x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`

            encoder_padding_mask (ByteTensor, optional): binary

                ByteTensor of shape `(batch, src_len)` where padding

                elements are indicated by ``1``.

            need_attn (bool, optional): return attention weights

            need_head_weights (bool, optional): return attention weights

                for each head (default: return average over heads).



        Returns:

            encoded output of shape `(seq_len, batch, embed_dim)`

        """
        if need_head_weights:
            need_attn = True

        residual = x
        if self.normalize_before:
            x = self.self_attn_layer_norm(x)
        if prev_self_attn_state is not None:
            prev_key, prev_value = prev_self_attn_state[:2]
            saved_state: Dict[str, Optional[Tensor]] = {
                "prev_key": prev_key,
                "prev_value": prev_value,
            }
            if len(prev_self_attn_state) >= 3:
                saved_state["prev_key_padding_mask"] = prev_self_attn_state[2]
            assert incremental_state is not None
            self.self_attn._set_input_buffer(incremental_state, saved_state)
        _self_attn_input_buffer = self.self_attn._get_input_buffer(incremental_state)
        if self.cross_self_attention and not (
            incremental_state is not None
            and _self_attn_input_buffer is not None
            and "prev_key" in _self_attn_input_buffer
        ):
            if self_attn_mask is not None:
                assert encoder_out is not None
                self_attn_mask = torch.cat(
                    (x.new_zeros(x.size(0), encoder_out.size(0)), self_attn_mask), dim=1
                )
            if self_attn_padding_mask is not None:
                if encoder_padding_mask is None:
                    assert encoder_out is not None
                    encoder_padding_mask = self_attn_padding_mask.new_zeros(
                        encoder_out.size(1), encoder_out.size(0)
                    )
                self_attn_padding_mask = torch.cat(
                    (encoder_padding_mask, self_attn_padding_mask), dim=1
                )
            assert encoder_out is not None
            y = torch.cat((encoder_out, x), dim=0)
        else:
            y = x

        x, attn = self.self_attn(
            query=x,
            key=y,
            value=y,
            key_padding_mask=self_attn_padding_mask,
            incremental_state=incremental_state,
            need_weights=False,
            attn_mask=self_attn_mask,
        )
        if self.c_attn is not None:
            tgt_len, bsz = x.size(0), x.size(1)
            x = x.view(tgt_len, bsz, self.nh, self.head_dim)
            x = torch.einsum("tbhd,h->tbhd", x, self.c_attn)
            x = x.reshape(tgt_len, bsz, self.embed_dim)
        if self.attn_ln is not None:
            x = self.attn_ln(x)
        x = self.dropout_module(x)
        x = self.residual_connection(x, residual)
        if not self.normalize_before:
            x = self.self_attn_layer_norm(x)

        if self.encoder_attn is not None and encoder_out is not None:
            residual = x
            if self.normalize_before:
                x = self.encoder_attn_layer_norm(x)
            if prev_attn_state is not None:
                prev_key, prev_value = prev_attn_state[:2]
                saved_state: Dict[str, Optional[Tensor]] = {
                    "prev_key": prev_key,
                    "prev_value": prev_value,
                }
                if len(prev_attn_state) >= 3:
                    saved_state["prev_key_padding_mask"] = prev_attn_state[2]
                assert incremental_state is not None
                self.encoder_attn._set_input_buffer(incremental_state, saved_state)

            x, attn = self.encoder_attn(
                query=x,
                key=encoder_out,
                value=encoder_out,
                key_padding_mask=encoder_padding_mask,
                incremental_state=incremental_state,
                static_kv=True,
                need_weights=need_attn or (not self.training and self.need_attn),
                need_head_weights=need_head_weights,
            )
            x = self.dropout_module(x)
            x = self.residual_connection(x, residual)
            if not self.normalize_before:
                x = self.encoder_attn_layer_norm(x)

        residual = x
        if self.normalize_before:
            x = self.final_layer_norm(x)

        x = self.activation_fn(self.fc1(x))
        x = self.activation_dropout_module(x)
        if self.ffn_layernorm is not None:
            x = self.ffn_layernorm(x)
        x = self.fc2(x)
        x = self.dropout_module(x)
        if self.w_resid is not None:
            residual = torch.mul(self.w_resid, residual)
        x = self.residual_connection(x, residual)
        if not self.normalize_before:
            x = self.final_layer_norm(x)
        if self.onnx_trace and incremental_state is not None:
            saved_state = self.self_attn._get_input_buffer(incremental_state)
            assert saved_state is not None
            if self_attn_padding_mask is not None:
                self_attn_state = [
                    saved_state["prev_key"],
                    saved_state["prev_value"],
                    saved_state["prev_key_padding_mask"],
                ]
            else:
                self_attn_state = [saved_state["prev_key"], saved_state["prev_value"]]
            return x, attn, self_attn_state
        return x, attn, None

    def make_generation_fast_(self, need_attn: bool = False, **kwargs):
        self.need_attn = need_attn


import torch
import torch.nn as nn
import math
from typing import Optional, Dict, List, Any
from torch import Tensor


def make_positions(tensor, padding_idx: int, onnx_trace: bool = False):
    """Replace non-padding symbols with their position numbers.



    Position numbers begin at padding_idx+1. Padding symbols are ignored.

    """
    # The series of casts and type-conversions here are carefully
    # balanced to both work with ONNX export and XLA. In particular XLA
    # prefers ints, cumsum defaults to output longs, and ONNX doesn't know
    # how to handle the dtype kwarg in cumsum.
    mask = tensor.ne(padding_idx).int()
    return (torch.cumsum(mask, dim=1).type_as(mask) * mask).long() + padding_idx

class SinusoidalPositionalEmbedding(nn.Module):
    """This module produces sinusoidal positional embeddings of any length.



    Padding symbols are ignored.

    """

    def __init__(self, embedding_dim, padding_idx, init_size=1024):
        super().__init__()
        self.embedding_dim = embedding_dim
        self.padding_idx = padding_idx if padding_idx is not None else 0
        self.weights = SinusoidalPositionalEmbedding.get_embedding(
            init_size, embedding_dim, padding_idx
        )
        self.onnx_trace = False
        self.register_buffer("_float_tensor", torch.FloatTensor(1))
        self.max_positions = int(1e5)

    def prepare_for_onnx_export_(self):
        self.onnx_trace = True

    @staticmethod
    def get_embedding(

        num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None

    ):
        """Build sinusoidal embeddings.



        This matches the implementation in tensor2tensor, but differs slightly

        from the description in Section 3.5 of "Attention Is All You Need".

        """
        half_dim = embedding_dim // 2
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
        emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(
            1
        ) * emb.unsqueeze(0)
        emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(
            num_embeddings, -1
        )
        if embedding_dim % 2 == 1:
            # zero pad
            emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
        if padding_idx is not None:
            emb[padding_idx, :] = 0
        return emb

    def forward(

        self,

        input,

        incremental_state: Optional[Any] = None,

        timestep: Optional[Tensor] = None,

        positions: Optional[Any] = None,

    ):
        """Input is expected to be of size [bsz x seqlen]."""
        bspair = torch.onnx.operators.shape_as_tensor(input)
        bsz, seq_len = bspair[0], bspair[1]
        max_pos = self.padding_idx + 1 + seq_len
        if self.weights is None or max_pos > self.weights.size(0):
            # recompute/expand embeddings if needed
            self.weights = SinusoidalPositionalEmbedding.get_embedding(
                max_pos, self.embedding_dim, self.padding_idx
            )
        self.weights = self.weights.to(self._float_tensor)

        if incremental_state is not None:
            # positions is the same for every token when decoding a single step
            pos = timestep.view(-1)[0] + 1 if timestep is not None else seq_len
            if self.onnx_trace:
                return (
                    self.weights.index_select(index=self.padding_idx + pos, dim=0)
                    .unsqueeze(1)
                    .repeat(bsz, 1, 1)
                )
            return self.weights[self.padding_idx + pos, :].expand(bsz, 1, -1)

        positions = make_positions(
            input, self.padding_idx, onnx_trace=self.onnx_trace
        )
        if self.onnx_trace:
            flat_embeddings = self.weights.detach().index_select(0, positions.view(-1))
            embedding_shape = torch.cat(
                (bsz.view(1), seq_len.view(1), torch.tensor([-1], dtype=torch.long))
            )
            embeddings = torch.onnx.operators.reshape_from_tensor_shape(
                flat_embeddings, embedding_shape
            )
            return embeddings
        return (
            self.weights.index_select(0, positions.view(-1))
            .view(bsz, seq_len, -1)
            .detach()
        )


class TransformerEncoderBase(nn.Module):
    def __init__(self, cfg, dictionary, embed_tokens, return_fc=False):
        super().__init__()
        self.cfg = cfg
        self.dictionary = dictionary
        self.return_fc = return_fc
        self.register_buffer('version', torch.Tensor([3]))

        self.dropout_module = FairseqDropout(cfg.dropout)
        self.encoder_layerdrop = cfg.encoder.layerdrop

        embed_dim = embed_tokens.embedding_dim
        self.padding_idx = embed_tokens.padding_idx
        self.max_source_positions = cfg.max_source_positions

        self.embed_tokens = embed_tokens
        self.embed_scale = 1.0 if cfg.no_scale_embedding else math.sqrt(embed_dim)

        self.embed_positions = (
            SinusoidalPositionalEmbedding(
                embed_dim, self.padding_idx, cfg.max_source_positions + self.padding_idx + 1
            ) if not cfg.no_token_positional_embeddings else None
        )

        # self.layernorm_embedding = (
        #     nn.LayerNorm(embed_dim) if cfg.layernorm_embedding else None
        # )

        if cfg.layernorm_embedding:
            self.layernorm_embedding = LayerNorm(embed_dim, export=cfg.export)
        else:
            self.layernorm_embedding = None

        if not cfg.adaptive_input and cfg.quant_noise.pq > 0:
            self.quant_noise = quant_noise(
                nn.Linear(embed_dim, embed_dim, bias=False),
                cfg.quant_noise.pq,
                cfg.quant_noise.pq_block_size,
            )
        else:
            self.quant_noise = None

        if self.encoder_layerdrop > 0.0:
            self.layers = LayerDropModuleList(p=self.encoder_layerdrop)
        else:
            self.layers = nn.ModuleList([])

        self.layers.extend(
            [self.build_encoder_layer(cfg) for i in range(cfg.encoder.layers)]
        )

        self.num_layers = len(self.layers)

        if cfg.encoder.normalize_before:
            self.layer_norm = LayerNorm(embed_dim, export=cfg.export)
        else:
            self.layer_norm = None

    def build_encoder_layer(self, cfg):
        layer = TransformerEncoderLayerBase(
            cfg, return_fc=self.return_fc
        )
        checkpoint = cfg.checkpoint_activations
        # if checkpoint:
        #     offload_to_cpu = cfg.offload_activations
        #     layer = checkpoint_wrapper(layer, offload_to_cpu=offload_to_cpu)
        # if we are checkpointing, enforce that FSDP always wraps the
        # checkpointed layer, regardless of layer size
        min_params_to_wrap = cfg.min_params_to_wrap if not checkpoint else 0
        # layer = fsdp_wrap(layer, min_num_params=min_params_to_wrap)
        return layer

    def forward_embedding(

        self, src_tokens, token_embedding: Optional[torch.Tensor] = None):
        # embed tokens and positions
        if token_embedding is None:
            token_embedding = self.embed_tokens(src_tokens)
        x = embed = self.embed_scale * token_embedding
        if self.embed_positions is not None:
            x = embed + self.embed_positions(src_tokens)
        if self.layernorm_embedding is not None:
            x = self.layernorm_embedding(x)
        x = self.dropout_module(x)
        if self.quant_noise is not None:
            x = self.quant_noise(x)
        return x, embed

    def max_positions(self):
        """Maximum input length supported by the encoder."""
        if self.embed_positions is None:
            return self.max_source_positions
        return min(self.max_source_positions, self.embed_positions.max_positions)

    def forward(self, src_tokens, src_lengths: Optional[torch.Tensor] = None, token_embeddings: Optional[torch.Tensor] = None, return_all_hiddens: bool = False):
        encoder_padding_mask = src_tokens.eq(self.padding_idx)
        # encoder_padding_mask = src_tokens.device.type == "xla" or encoder_padding_mask.any()

        has_pads = src_tokens.device.type == "xla" or encoder_padding_mask.any()

        x, encoder_embedding = self.forward_embedding(src_tokens)

        if has_pads:
            x = x * (1 - encoder_padding_mask.unsqueeze(-1).type_as(x))

        x = x.transpose(0, 1)  # B x T x C -> T x B x C

        encoder_states = [] if return_all_hiddens else None
        fc_results = []

        if return_all_hiddens:
          encoder_states.append(x)

        encoder_padding_mask = encoder_padding_mask if has_pads else None
        for layer in self.layers:
            x = layer(x, encoder_padding_mask = encoder_padding_mask)

            if isinstance(x, tuple) and len(x) ==2:
              x, fc_result = x
            else:
              fc_result = None

            if return_all_hiddens:
                assert encoder_states is not None
                encoder_states.append(x)
                fc_results.append(fc_result)

        if self.layer_norm is not None:
            x = self.layer_norm(x)

        src_lengths = (
            src_tokens.ne(self.padding_idx)
            .sum(dim=1, dtype=torch.int32)
            .reshape(-1, 1)
            .contiguous()
        )

        return {
            "encoder_out": [x],  # T x B x C
            "encoder_padding_mask": [encoder_padding_mask],  # B x T
            "encoder_embedding": [encoder_embedding],  # B x T x C
            "encoder_states": encoder_states,  # List[T x B x C]
            "fc_results": fc_results,  # List[T x B x C]
            "src_tokens": [],
            "src_lengths": [src_lengths],
        }

import torch.nn as nn
import torch
import sys
import torch.distributed as dist
# from fairseq import utils
# from fairseq.distributed import utils as distributed_utils
# from fairseq.modules.layer_norm import LayerNorm

_MODEL_PARALLEL_GROUP = None
# Data parallel group that the current rank belongs to.
_DATA_PARALLEL_GROUP = None
_USE_XLA = False

def use_xla():
    global _USE_XLA
    return _USE_XLA

def get_world_size(group):
    if use_xla():
        assert group[0] == "tpu"
        my_group = _find_my_group(group[1])
        return len(my_group)
    elif torch.distributed.is_initialized():
        return dist.get_world_size(group=group)
    else:
        return 1

def get_global_world_size():
    if use_xla():
        return xm.xrt_world_size()
    elif torch.distributed.is_initialized():
        return torch.distributed.get_world_size()
    else:
        return 1
def get_global_rank():
    if use_xla():
        return xm.get_ordinal()
    elif torch.distributed.is_initialized():
        return torch.distributed.get_rank()
    else:
        return 0

def new_groups(grouped_ranks: List[List[int]]):
    if use_xla():
        return ("tpu", grouped_ranks)
    else:
        groups = [dist.new_group(g) for g in grouped_ranks]
        my_group_idx = _find_my_group_index(grouped_ranks)
        return groups[my_group_idx]

def get_global_group():
    if use_xla():
        return new_groups([list(range(get_global_world_size()))])
    elif torch.distributed.is_initialized():
        if not hasattr(get_global_group, "_global_group"):
            # ideally we could use torch.distributed.group.WORLD, but it seems
            # to cause random NCCL hangs in some cases
            get_global_group._global_group = dist.new_group()
        return get_global_group._global_group
    else:
        return None

def get_global_group():
    if use_xla():
        return new_groups([list(range(get_global_world_size()))])
    elif torch.distributed.is_initialized():
        if not hasattr(get_global_group, "_global_group"):
            # ideally we could use torch.distributed.group.WORLD, but it seems
            # to cause random NCCL hangs in some cases
            get_global_group._global_group = dist.new_group()
        return get_global_group._global_group
    else:
        return None

def _find_my_group_index(grouped_ranks):
    my_rank = get_global_rank()
    for i, group in enumerate(grouped_ranks):
        if my_rank in group:
            return i
    raise RuntimeError


def _find_my_group(grouped_ranks):
    index = _find_my_group_index(grouped_ranks)
    return grouped_ranks[index]

def get_global_group():
    if use_xla():
        return new_groups([list(range(get_global_world_size()))])
    elif torch.distributed.is_initialized():
        if not hasattr(get_global_group, "_global_group"):
            # ideally we could use torch.distributed.group.WORLD, but it seems
            # to cause random NCCL hangs in some cases
            get_global_group._global_group = dist.new_group()
        return get_global_group._global_group
    else:
        return None

def get_world_size(group):
    if use_xla():
        assert group[0] == "tpu"
        my_group = _find_my_group(group[1])
        return len(my_group)
    elif torch.distributed.is_initialized():
        return dist.get_world_size(group=group)
    else:
        return 1

def get_rank(group):
    if use_xla():
        assert group[0] == "tpu"
        my_group = _find_my_group(group[1])
        return my_group.index(get_global_rank())
    else:
        return dist.get_rank(group=group)

def mpu_get_data_parallel_group():
    """Get the data parallel group the caller rank belongs to."""
    assert _DATA_PARALLEL_GROUP is not None, \
        'data parallel group is not initialized'
    return _DATA_PARALLEL_GROUP

def get_data_parallel_group():
    """Get the data parallel group the caller rank belongs to."""
    global _USE_MEGATRON
    if _USE_MEGATRON:
        return mpu_get_data_parallel_group()
    else:
        return get_global_group()

def get_data_parallel_rank():
    """Return my rank for the data parallel group."""
    return get_rank(get_data_parallel_group())

def get_data_parallel_world_size():
    """Return world size for the data parallel group."""
    return get_world_size(get_data_parallel_group())

class BaseSublayer(nn.Module):
    def __init__(self, args):
        super().__init__()
        self.activation_fn = get_activation_fn(
            activation=getattr(args, "activation_fn", "relu") or "relu"
        )
        self.norm = LayerNorm(args.decoder_embed_dim, export=False)
        self.ff1 = torch.nn.Linear(args.decoder_embed_dim, args.decoder_ffn_embed_dim)
        self.ff2 = torch.nn.Linear(args.decoder_ffn_embed_dim, args.decoder_embed_dim)
        self.ff2.weight.data.zero_()

    def forward(self, xs):
        return xs + self.ff2(self.activation_fn(self.ff1(self.norm(xs))))

class BaseLayer(nn.Module):
    def __init__(self, args):
        super().__init__()
        self.num_workers = get_data_parallel_world_size()
        expert_centroids = torch.empty(self.num_workers, args.decoder_embed_dim)
        torch.nn.init.orthogonal_(expert_centroids, gain=0.1)
        self.register_parameter(
            "expert_centroids", torch.nn.Parameter(expert_centroids)
        )
        self.expert_network = nn.Sequential(
            *([BaseSublayer(args) for _ in range(args.base_sublayers)])
        )
        self.expert_id = get_data_parallel_rank()
        self.shuffle = args.base_shuffle
        self.cpp = self.load_assignment()

        # Add a special attribute to the expert parameters, so we know not to sync their gradients
        for param in self.expert_network.parameters():
            param.expert = True

    def forward(self, input_features, *args, **kwargs):
        features = input_features.reshape(-1, input_features.size(-1))
        is_training = input_features.requires_grad

        if self.shuffle and is_training:
            # Send each token to a random worker, to break correlations within the batch
            shuffle_sort = torch.randperm(features.size(0), device=features.device)
            features = All2All.apply(features[shuffle_sort])

        with torch.no_grad():
            # Compute similarity of each token to each expert, for routing
            token_expert_affinities = features.matmul(
                self.expert_centroids.transpose(0, 1)
            )

        # Compute which token goes to which expert
        sort_by_expert, input_splits, output_splits = (
            self.balanced_assignment(token_expert_affinities)
            if is_training
            else self.greedy_assignment(token_expert_affinities)
        )
        # Swap these tokens for the right ones for our expert
        routed_features = All2All.apply(
            features[sort_by_expert], output_splits, input_splits
        )

        if routed_features.size(0) > 0:
            # Mix in the expert network based on how appropriate it is for these tokens
            alpha = torch.sigmoid(
                routed_features.mv(self.expert_centroids[self.expert_id])
            ).unsqueeze(1)
            routed_features = (
                alpha * self.expert_network(routed_features)
                + (1 - alpha) * routed_features
            )
        # Return to original worker and ordering
        result = All2All.apply(routed_features, input_splits, output_splits)[
            self.inverse_sort(sort_by_expert)
        ]

        if self.shuffle and is_training:
            # Undo shuffling
            result = All2All.apply(result)[self.inverse_sort(shuffle_sort)]

        # Return additional Nones for compatibility with TransformerDecoderLayer
        return result.view(input_features.size()), None, None

    def inverse_sort(self, order):
        # Creates an index that undoes a sort: xs==xs[order][inverse_sort(order)]
        return torch.empty_like(order).scatter_(
            0, order, torch.arange(0, order.size(0), device=order.device)
        )

    def balanced_assignment(self, scores):
        ok = scores.isfinite()
        if not ok.all():
            # NaNs here can break the assignment algorithm
            scores[~ok] = scores[ok].min()
        return self.cpp.balanced_assignment(scores), None, None

    # Assigns each token to the top k experts
    def greedy_assignment(self, scores, k=1):
        token_to_workers = torch.topk(scores, dim=1, k=k, largest=True).indices.view(-1)
        token_to_workers, sort_ordering = torch.sort(token_to_workers)
        worker2token = sort_ordering // k

        # Find how many tokens we're sending to each other worker (being careful for sending 0 tokens to some workers)
        output_splits = torch.zeros(
            (self.num_workers,), dtype=torch.long, device=scores.device
        )
        workers, counts = torch.unique_consecutive(token_to_workers, return_counts=True)
        output_splits[workers] = counts
        # Tell other workers how many tokens to expect from us
        input_splits = All2All.apply(output_splits)
        return worker2token, input_splits.tolist(), output_splits.tolist()

    def load_assignment(self):
        try:
            from fairseq import libbase

            return libbase

        except ImportError as e:
            sys.stderr.write(
                "ERROR: missing libbase. run `python setup.py build_ext --inplace`\n"
            )
            raise e



class TransformerDecoderBase(nn.Module):
    """

    Transformer decoder implemented using PyTorch's nn.Module.



    Args:

        vocab_size (int): Size of the vocabulary.

        embed_dim (int): Dimension of the embeddings.

        num_layers (int): Number of Transformer decoder layers.

        num_heads (int): Number of attention heads.

        ff_dim (int): Dimension of feed-forward layers.

        dropout (float): Dropout probability.

        max_target_positions (int): Maximum target sequence length.

        padding_idx (int): Index for the padding token.

        share_input_output_embed (bool): Whether to share input/output embeddings.

    """

    def __init__(

        self,

        cfg,

        dictionary,

        embed_tokens,

        no_encoder_attn=False,

        output_projection=None,

    ):
        super().__init__()
        self.register_buffer("version", torch.Tensor([3]))
        self._future_mask = torch.empty(0)
        ################
        self.dropout_module = FairseqDropout(
            cfg.dropout, module_name="TransformerDecoder")
        self.decoder_layerdrop = cfg.decoder.layerdrop
        self.share_input_output_embed = cfg.share_decoder_input_output_embed

        input_embed_dim = embed_tokens.embedding_dim
        embed_dim = cfg.decoder.embed_dim
        self.embed_dim = embed_dim
        self.output_embed_dim = cfg.decoder.output_dim

        self.padding_idx = embed_tokens.padding_idx
        self.max_target_positions = cfg.max_target_positions

        self.embed_tokens = embed_tokens

        self.embed_scale = 1.0 if cfg.no_scale_embedding else math.sqrt(
            embed_dim)

        if cfg.quant_noise.pq > 0:
            self.quant_noise = quant_noise(
                nn.Linear(embed_dim, embed_dim, bias=False),
                cfg.quant_noise.pq,
                cfg.quant_noise.pq_block_size,
            )
        else:
            self.quant_noise = None

        self.project_in_dim = (
            nn.Linear(input_embed_dim, embed_dim, bias=False)
            if embed_dim != input_embed_dim
            else None
        )
        self.embed_positions = (
            SinusoidalPositionalEmbedding(
                embed_dim, self.padding_idx, cfg.max_target_positions + self.padding_idx + 1
            )
            if not cfg.no_token_positional_embeddings
            else None
        )
        if cfg.layernorm_embedding:
            self.layernorm_embedding = LayerNorm(embed_dim, export=cfg.export)
        else:
            self.layernorm_embedding = None

        self.cross_self_attention = cfg.cross_self_attention

        if self.decoder_layerdrop > 0.0:
            self.layers = LayerDropModuleList(p=self.decoder_layerdrop)
        else:
            self.layers = nn.ModuleList([])
        self.layers.extend(
            [
                self.build_decoder_layer(cfg, no_encoder_attn)
                for _ in range(cfg.decoder.layers)
            ]
        )
        self.num_layers = len(self.layers)

        if cfg.decoder.normalize_before and not cfg.no_decoder_final_norm:
            self.layer_norm = LayerNorm(embed_dim, export=cfg.export)
        else:
            self.layer_norm = None

        self.project_out_dim = (
            nn.Linear(embed_dim, self.output_embed_dim, bias=False)
            if embed_dim != self.output_embed_dim and not cfg.tie_adaptive_weights
            else None
        )

        self.adaptive_softmax = None
        self.output_projection = output_projection
        if self.output_projection is None:
            self.build_output_projection(cfg, dictionary, embed_tokens)
        ################


    def build_output_projection(self, cfg, dictionary, embed_tokens):
        if self.share_input_output_embed:
            self.output_projection = nn.Linear(
                self.embed_tokens.weight.shape[1],
                self.embed_tokens.weight.shape[0],
                bias=False,
            )
            self.output_projection.weight = self.embed_tokens.weight
        else:
            self.output_projection = nn.Linear(
                self.output_embed_dim, len(dictionary), bias=False
            )
            nn.init.normal_(
                self.output_projection.weight, mean=0, std=self.output_embed_dim**-0.5
            )
        num_base_layers = cfg.base_layers
        for i in range(num_base_layers):
            self.layers.insert(
                ((i + 1) * cfg.decoder.layers) // (num_base_layers + 1),
                BaseLayer(cfg),
            )


    def build_decoder_layer(self, cfg, no_encoder_attn=False):
        layer = TransformerDecoderLayerBase(cfg, no_encoder_attn)
        checkpoint = cfg.checkpoint_activations
        if checkpoint:
            offload_to_cpu = cfg.offload_activations
            # layer = checkpoint_wrapper(layer, offload_to_cpu=offload_to_cpu)
        # if we are checkpointing, enforce that FSDP always wraps the
        # checkpointed layer, regardless of layer size
        min_params_to_wrap = cfg.min_params_to_wrap if not checkpoint else 0
        # layer = fsdp_wrap(layer, min_num_params=min_params_to_wrap)
        return layer

    def forward(

        self,

        prev_output_tokens: Tensor,

        encoder_out: Optional[Tensor] = None,

        src_padding_mask: Optional[Tensor] = None,

        src_lengths: Optional[Any] = None,

        return_all_hiddens: bool = False,

         features_only: bool = False,

        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,

        full_context_alignment: bool = False,

        alignment_layer: Optional[int] = None,

        alignment_heads: Optional[int] = None,

    ):
        """

        Args:

            prev_output_tokens (Tensor): Previous output tokens of shape (batch, tgt_len).

            encoder_out (Tensor, optional): Encoder outputs (batch, src_len, embed_dim).

            src_padding_mask (Tensor, optional): Padding mask for the encoder inputs.



        Returns:

            Tensor: Decoder output of shape (batch, tgt_len, vocab_size).

        """
        bs, slen = prev_output_tokens.size()
        if alignment_layer is None:
            alignment_layer = self.num_layers - 1

        enc: Optional[Tensor] = None
        padding_mask: Optional[Tensor] = None

        if encoder_out is not None and len(encoder_out["encoder_out"]) > 0:
            enc = encoder_out["encoder_out"][0]
        if encoder_out is not None and len(encoder_out["encoder_padding_mask"]) > 0:
            padding_mask = encoder_out["encoder_padding_mask"][0]

        # embed positions
        positions = None
        if self.embed_positions is not None:
            positions = self.embed_positions(
                prev_output_tokens, incremental_state=incremental_state
            )

        if incremental_state is not None:
            prev_output_tokens = prev_output_tokens[:, -1:]
            if positions is not None:
                positions = positions[:, -1:]


        # Prevent torchscript exporting issue for dynamic quant embedding
        prev_output_tokens = prev_output_tokens.contiguous()
        # embed tokens and positions
        x = self.embed_scale * self.embed_tokens(prev_output_tokens)

        if self.quant_noise is not None:
            x = self.quant_noise(x)

        if self.project_in_dim is not None:
            x = self.project_in_dim(x)

        if positions is not None:
            x += positions

        if self.layernorm_embedding is not None:
            x = self.layernorm_embedding(x)

        x = self.dropout_module(x)

        # B x T x C -> T x B x C
        x = x.transpose(0, 1)

        self_attn_padding_mask: Optional[Tensor] = None
        if self.cross_self_attention or prev_output_tokens.eq(self.padding_idx).any():
            self_attn_padding_mask = prev_output_tokens.eq(self.padding_idx)



        # Embed tokens and positions
        # positions = torch.arange(prev_output_tokens.size(1), device=prev_output_tokens.device).unsqueeze(0)
        # x = self.embed_tokens(prev_output_tokens) + self.embed_positions(positions)
        # x = self.dropout(x)
        # decoder layers
        attn: Optional[Tensor] = None
        inner_states: List[Optional[Tensor]] = [x]

        for idx, layer in enumerate(self.layers):
            if incremental_state is None and not full_context_alignment:
                self_attn_mask = self.buffered_future_mask(x)
            else:
                self_attn_mask = None

            x, layer_attn, _ = layer(
                x,
                enc,
                padding_mask,
                incremental_state,
                self_attn_mask=self_attn_mask,
                self_attn_padding_mask=self_attn_padding_mask,
                need_attn=bool((idx == alignment_layer)),
                need_head_weights=bool((idx == alignment_layer)),
            )
            inner_states.append(x)
            if layer_attn is not None and idx == alignment_layer:
                attn = layer_attn.float().to(x)

        if attn is not None:
            if alignment_heads is not None:
                attn = attn[:alignment_heads]

            # average probabilities over heads
            attn = attn.mean(dim=0)

        if self.layer_norm is not None:
            x = self.layer_norm(x)

        # T x B x C -> B x T x C
        x = x.transpose(0, 1)

        if self.project_out_dim is not None:
            x = self.project_out_dim(x)

        if not features_only:
            x = self.output_layer(x)

        return x, {"attn": [attn], "inner_states": inner_states}

    def output_layer(self, features):
        """Project features to the vocabulary size."""
        if self.adaptive_softmax is None:
            # project back to size of vocabulary
            return self.output_projection(features)
        else:
            return features

    def max_positions(self):
        """Maximum output length supported by the decoder."""
        if self.embed_positions is None:
            return self.max_target_positions
        return min(self.max_target_positions, self.embed_positions.max_positions)

    def fill_with_neg_inf(self, t):
      """FP16-compatible function that fills a tensor with -inf."""
      return t.float().fill_(float("-inf")).type_as(t)

    def buffered_future_mask(self, tensor):
        dim = tensor.size(0)
        # self._future_mask.device != tensor.device is not working in TorchScript. This is a workaround.
        if (
            self._future_mask.size(0) == 0
            or (not self._future_mask.device == tensor.device)
            or self._future_mask.size(0) < dim
        ):
            self._future_mask = torch.triu(
                self.fill_with_neg_inf(torch.zeros([dim, dim])), 1
            )
        self._future_mask = self._future_mask.to(tensor)
        return self._future_mask[:dim, :dim]


class FairseqIncrementalState(object):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.init_incremental_state()

    def init_incremental_state(self):
        self._incremental_state_id = str(uuid.uuid4())

    def _get_full_incremental_state_key(self, key: str) -> str:
        return "{}.{}".format(self._incremental_state_id, key)

    def get_incremental_state(

        self,

        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],

        key: str,

    ) -> Optional[Dict[str, Optional[Tensor]]]:
        """Helper for getting incremental state for an nn.Module."""
        full_key = self._get_full_incremental_state_key(key)
        if incremental_state is None or full_key not in incremental_state:
            return None
        return incremental_state[full_key]

    def set_incremental_state(

        self,

        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],

        key: str,

        value: Dict[str, Optional[Tensor]],

    ) -> Optional[Dict[str, Dict[str, Optional[Tensor]]]]:
        """Helper for setting incremental state for an nn.Module."""
        if incremental_state is not None:
            full_key = self._get_full_incremental_state_key(key)
            incremental_state[full_key] = value
        return incremental_state


def with_incremental_state(cls):
    cls.__bases__ = (FairseqIncrementalState,) + tuple(
        b for b in cls.__bases__ if b != FairseqIncrementalState
    )
    return cls

def eval_str_dict(x, type=dict):
    if x is None:
        return None
    if isinstance(x, str):
        x = eval(x)
    return x

def softmax(x, dim: int, onnx_trace: bool = False):
    if onnx_trace:
        return F.softmax(x.float(), dim=dim)
    else:
        return F.softmax(x, dim=dim, dtype=torch.float32)



# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math
from typing import Dict, List, Optional, Tuple

import torch
import torch.nn.functional as F
from torch import Tensor, nn
from torch.nn import Parameter

try:
    from xformers.components.attention import build_attention
    from xformers.components.attention.utils import maybe_merge_masks

    _xformers_available = True
except ImportError:
    _xformers_available = False


# TODO: move this into xformers?
# TODO: uint8 input type should just output a bool
def _mask_for_xformers(mask: Tensor, to_dtype: Optional[torch.dtype] = None):
    """

    call to pytorch multihead accepts three mask types:

        - ByteTensor where non-zero means to mask

        - FloatTensor which is an additive mask

        - BoolTensor where True means to mask

    xFormers currently accepts boolean and additive maks. For boolean masks

    the values have opposite meaning. For a BoolTensor True mean to keep the value.

    """
    float_types = [torch.float, torch.float16]
    # If an input mask is a float it is an additive mask. Otherwise it is either uint8 or bool.
    additive = mask.dtype in float_types
    # If to_dype is not specified, keep same dtype as mask.
    to_dtype = mask.dtype if to_dtype is None else to_dtype
    to_additive = to_dtype in float_types

    if additive:
        if to_additive:
            return mask.to(to_dtype)
        mask = mask < 0

    if to_additive:
        # return additive mask
        new_mask = torch.zeros_like(mask, dtype=to_dtype)
        new_mask = new_mask.masked_fill_(mask, -float("inf"))
        return new_mask

    # In xFormers True is value to keep rather than value to mask
    mask = ~mask.to(torch.bool)
    mask = mask.to(to_dtype)
    return mask

def softmax(x, dim: int, onnx_trace: bool = False):
    if onnx_trace:
        return F.softmax(x.float(), dim=dim)
    else:
        return F.softmax(x, dim=dim, dtype=torch.float32)

def eval_str_dict(x, type=dict):
    if x is None:
        return None
    if isinstance(x, str):
        x = eval(x)
    return x


@with_incremental_state
class MultiheadAttention(nn.Module):
    """Multi-headed attention.



    See "Attention Is All You Need" for more details.

    """

    def __init__(

        self,

        embed_dim,

        num_heads,

        kdim=None,

        vdim=None,

        dropout=0.0,

        bias=True,

        add_bias_kv=False,

        add_zero_attn=False,

        self_attention=False,

        encoder_decoder_attention=False,

        q_noise=0.0,

        qn_block_size=8,

        # TODO: pass in config rather than string.

        # config defined in xformers.components.attention.AttentionConfig

        xformers_att_config: Optional[str] = None,

        xformers_blocksparse_layout: Optional[

            torch.Tensor

        ] = None,  # This should be part of the config

        xformers_blocksparse_blocksize: Optional[

            int

        ] = 16,  # This should be part of the config

    ):
        super().__init__()

        xformers_att_config = eval_str_dict(xformers_att_config)
        self.use_xformers = xformers_att_config is not None
        if self.use_xformers and not _xformers_available:
            raise ImportError("\n\n  Please install xFormers.")
        self.embed_dim = embed_dim
        self.kdim = kdim if kdim is not None else embed_dim
        self.vdim = vdim if vdim is not None else embed_dim
        self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim

        self.num_heads = num_heads
        self.dropout_module = FairseqDropout(
            dropout, module_name=self.__class__.__name__
        )

        self.head_dim = embed_dim // num_heads
        assert (
            self.head_dim * num_heads == self.embed_dim
        ), "embed_dim must be divisible by num_heads"
        self.scaling = self.head_dim**-0.5

        self.self_attention = self_attention
        self.encoder_decoder_attention = encoder_decoder_attention

        assert not self.self_attention or self.qkv_same_dim, (
            "Self-attention requires query, key and " "value to be of the same size"
        )

        self.k_proj = quant_noise(
            nn.Linear(self.kdim, embed_dim, bias=bias), q_noise, qn_block_size
        )
        self.v_proj = quant_noise(
            nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size
        )
        self.q_proj = quant_noise(
            nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size
        )

        self.out_proj = quant_noise(
            nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size
        )

        if add_bias_kv:
            self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim))
            self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim))
        else:
            self.bias_k = self.bias_v = None

        self.add_zero_attn = add_zero_attn
        self.beam_size = 1
        self.reset_parameters()

        if self.use_xformers:
            xformers_att_config["dropout"] = xformers_att_config.get("dropout", dropout)
            xformers_att_config["num_heads"] = xformers_att_config.get(
                "num_heads", num_heads
            )

            if xformers_blocksparse_layout is not None:
                # Could be part of a single config passed only once
                xformers_att_config["block_size"] = xformers_blocksparse_blocksize
                xformers_att_config["layout"] = xformers_blocksparse_layout
                xformers_att_config["name"] = "blocksparse"

            self.attention = build_attention(xformers_att_config)

        self.onnx_trace = False
        self.skip_embed_dim_check = False

    def prepare_for_onnx_export_(self):
        self.onnx_trace = True

    def reset_parameters(self):
        if self.qkv_same_dim:
            # Empirically observed the convergence to be much better with
            # the scaled initialization
            nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2))
            nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2))
            nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2))
        else:
            nn.init.xavier_uniform_(self.k_proj.weight)
            nn.init.xavier_uniform_(self.v_proj.weight)
            nn.init.xavier_uniform_(self.q_proj.weight)

        nn.init.xavier_uniform_(self.out_proj.weight)
        if self.out_proj.bias is not None:
            nn.init.constant_(self.out_proj.bias, 0.0)
        if self.bias_k is not None:
            nn.init.xavier_normal_(self.bias_k)
        if self.bias_v is not None:
            nn.init.xavier_normal_(self.bias_v)

    def _get_reserve_head_index(self, num_heads_to_keep: int):
        k_proj_heads_norm = []
        q_proj_heads_norm = []
        v_proj_heads_norm = []

        for i in range(self.num_heads):
            start_idx = i * self.head_dim
            end_idx = (i + 1) * self.head_dim
            k_proj_heads_norm.append(
                torch.sum(
                    torch.abs(
                        self.k_proj.weight[
                            start_idx:end_idx,
                        ]
                    )
                ).tolist()
                + torch.sum(torch.abs(self.k_proj.bias[start_idx:end_idx])).tolist()
            )
            q_proj_heads_norm.append(
                torch.sum(
                    torch.abs(
                        self.q_proj.weight[
                            start_idx:end_idx,
                        ]
                    )
                ).tolist()
                + torch.sum(torch.abs(self.q_proj.bias[start_idx:end_idx])).tolist()
            )
            v_proj_heads_norm.append(
                torch.sum(
                    torch.abs(
                        self.v_proj.weight[
                            start_idx:end_idx,
                        ]
                    )
                ).tolist()
                + torch.sum(torch.abs(self.v_proj.bias[start_idx:end_idx])).tolist()
            )

        heads_norm = []
        for i in range(self.num_heads):
            heads_norm.append(
                k_proj_heads_norm[i] + q_proj_heads_norm[i] + v_proj_heads_norm[i]
            )

        sorted_head_index = sorted(
            range(self.num_heads), key=lambda k: heads_norm[k], reverse=True
        )
        reserve_head_index = []
        for i in range(num_heads_to_keep):
            start = sorted_head_index[i] * self.head_dim
            end = (sorted_head_index[i] + 1) * self.head_dim
            reserve_head_index.append((start, end))
        return reserve_head_index

    def _adaptive_prune_heads(self, reserve_head_index: List[Tuple[int, int]]):
        new_q_weight = []
        new_q_bias = []
        new_k_weight = []
        new_k_bias = []
        new_v_weight = []
        new_v_bias = []
        new_out_proj_weight = []

        for ele in reserve_head_index:
            start_idx, end_idx = ele
            new_q_weight.append(
                self.q_proj.weight[
                    start_idx:end_idx,
                ]
            )
            new_q_bias.append(self.q_proj.bias[start_idx:end_idx])

            new_k_weight.append(
                self.k_proj.weight[
                    start_idx:end_idx,
                ]
            )

            new_k_bias.append(self.k_proj.bias[start_idx:end_idx])

            new_v_weight.append(
                self.v_proj.weight[
                    start_idx:end_idx,
                ]
            )
            new_v_bias.append(self.v_proj.bias[start_idx:end_idx])

            new_out_proj_weight.append(self.out_proj.weight[:, start_idx:end_idx])

        new_q_weight = torch.cat(new_q_weight).detach()
        new_k_weight = torch.cat(new_k_weight).detach()
        new_v_weight = torch.cat(new_v_weight).detach()
        new_out_proj_weight = torch.cat(new_out_proj_weight, dim=-1).detach()
        new_q_weight.requires_grad = True
        new_k_weight.requires_grad = True
        new_v_weight.requires_grad = True
        new_out_proj_weight.requires_grad = True

        new_q_bias = torch.cat(new_q_bias).detach()
        new_q_bias.requires_grad = True

        new_k_bias = torch.cat(new_k_bias).detach()
        new_k_bias.requires_grad = True

        new_v_bias = torch.cat(new_v_bias).detach()
        new_v_bias.requires_grad = True

        self.q_proj.weight = torch.nn.Parameter(new_q_weight)
        self.q_proj.bias = torch.nn.Parameter(new_q_bias)

        self.k_proj.weight = torch.nn.Parameter(new_k_weight)
        self.k_proj.bias = torch.nn.Parameter(new_k_bias)

        self.v_proj.weight = torch.nn.Parameter(new_v_weight)
        self.v_proj.bias = torch.nn.Parameter(new_v_bias)

        self.out_proj.weight = torch.nn.Parameter(new_out_proj_weight)

        self.num_heads = len(reserve_head_index)
        self.embed_dim = self.head_dim * self.num_heads
        self.q_proj.out_features = self.embed_dim
        self.k_proj.out_features = self.embed_dim
        self.v_proj.out_features = self.embed_dim

    def _set_skip_embed_dim_check(self):
        self.skip_embed_dim_check = True

    def _pad_masks(

        self,

        key_padding_mask: Optional[Tensor],

        attn_mask: Optional[Tensor],

    ) -> Tuple[Optional[Tensor], Optional[Tensor]]:
        if attn_mask is not None:
            shape = attn_mask.size()[:-1] + torch.Size([1])
            attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(shape)], dim=-1)
        if key_padding_mask is not None:
            shape = key_padding_mask.size()[:-1] + torch.Size([1])
            key_padding_mask = torch.cat(
                [
                    key_padding_mask,
                    key_padding_mask.new_zeros(shape),
                ],
                dim=-1,
            )
        return key_padding_mask, attn_mask

    def _add_bias(

        self,

        k: Tensor,

        v: Tensor,

        key_padding_mask: Optional[Tensor],

        attn_mask: Optional[Tensor],

        bsz: int,

    ) -> Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]:
        assert self.bias_k is not None
        assert self.bias_v is not None
        k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
        v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
        key_padding_mask, attn_mask = self._pad_masks(
            key_padding_mask=key_padding_mask, attn_mask=attn_mask
        )
        return k, v, key_padding_mask, attn_mask

    def _append_zero_attn(

        self,

        k: Tensor,

        v: Tensor,

        key_padding_mask: Optional[Tensor],

        attn_mask: Optional[Tensor],

    ) -> Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]:
        zero_attn_shape = k.size()[:-2] + torch.Size([1]) + k.size()[-1:]
        k = torch.cat(
            [k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=-2
        )
        v = torch.cat(
            [v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=-2
        )
        key_padding_mask, attn_mask = self._pad_masks(
            key_padding_mask=key_padding_mask, attn_mask=attn_mask
        )
        return k, v, key_padding_mask, attn_mask

    def _xformers_attn_forward(

        self,

        query,

        key: Optional[Tensor],

        value: Optional[Tensor],

        key_padding_mask: Optional[Tensor] = None,

        need_weights: bool = True,

        attn_mask: Optional[Tensor] = None,

    ) -> Tuple[Tensor, Optional[Tensor]]:

        tgt_len, bsz, embed_dim = query.size()

        if key_padding_mask is not None:
            assert key_padding_mask.size(0) == bsz
            assert key_padding_mask.size(1) == tgt_len

        if self.self_attention:
            key = query
            value = query
        elif self.encoder_decoder_attention:
            value = key

        q = self.q_proj(query)
        k = self.k_proj(key)
        v = self.v_proj(value)

        if self.bias_k is not None:
            assert self.bias_v is not None
            k, v, attn_mask, key_padding_mask = self._add_bias(
                k, v, attn_mask, key_padding_mask, bsz
            )

        def fold_heads(x):
            return (
                x.contiguous()
                .view(-1, bsz * self.num_heads, self.head_dim)
                .transpose(0, 1)
            )

        def split_heads(x):
            return (
                x.contiguous()
                .view(-1, bsz, self.num_heads, self.head_dim)
                .transpose(0, 1)
                .transpose(1, 2)
            )

        massage = split_heads if self.attention.requires_head_dimension else fold_heads
        q = massage(q)
        if k is not None:
            k = massage(k)
        if v is not None:
            v = massage(v)

        if self.add_zero_attn:
            k, v, key_padding_mask, attn_mask = self._append_zero_attn(
                k=k, v=v, key_padding_mask=key_padding_mask, attn_mask=attn_mask
            )

        kwargs = {}

        if attn_mask is not None and self.attention.supports_attention_mask:
            attn_mask = _mask_for_xformers(attn_mask, to_dtype=q.dtype)
            kwargs["att_mask"] = attn_mask

        if key_padding_mask is not None:
            key_padding_mask = _mask_for_xformers(key_padding_mask, to_dtype=torch.bool)
            if not self.attention.requires_separate_masks:
                attn_mask = maybe_merge_masks(
                    attn_mask,
                    key_padding_mask,
                    batch_size=bsz,
                    src_len=k.size(-2),
                    tgt_len=q.size(-2),
                    num_heads=self.num_heads,
                )
                key_padding_mask = None
                kwargs["att_mask"] = attn_mask
            if self.attention.supports_key_padding_mask:
                kwargs["key_padding_mask"] = key_padding_mask

        y = self.attention(q, k, v, **kwargs)

        y = (
            y.view(bsz, self.num_heads, tgt_len, self.head_dim)
            .transpose(1, 2)
            .flatten(start_dim=2, end_dim=3)
            .transpose(0, 1)
        )
        assert list(y.size()) == [tgt_len, bsz, embed_dim]

        # Dropout not needed because already applied in attention.
        # It is applied to the attention weights before matmul with v.
        y = self.out_proj(y)

        # TODO: support returning attention weights if needed.
        return y, None

    def forward(

        self,

        query,

        key: Optional[Tensor],

        value: Optional[Tensor],

        key_padding_mask: Optional[Tensor] = None,

        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,

        need_weights: bool = True,

        static_kv: bool = False,

        attn_mask: Optional[Tensor] = None,

        before_softmax: bool = False,

        need_head_weights: bool = False,

    ) -> Tuple[Tensor, Optional[Tensor]]:
        """Input shape: Time x Batch x Channel



        Args:

            key_padding_mask (ByteTensor, optional): mask to exclude

                keys that are pads, of shape `(batch, src_len)`, where

                padding elements are indicated by 1s.

            need_weights (bool, optional): return the attention weights,

                averaged over heads (default: False).

            attn_mask (ByteTensor, optional): typically used to

                implement causal attention, where the mask prevents the

                attention from looking forward in time (default: None).

            before_softmax (bool, optional): return the raw attention

                weights and values before the attention softmax.

            need_head_weights (bool, optional): return the attention

                weights for each head. Implies *need_weights*. Default:

                return the average attention weights over all heads.

        """
        if need_head_weights:
            need_weights = True

        is_tpu = query.device.type == "xla"

        tgt_len, bsz, embed_dim = query.size()
        src_len = tgt_len
        if not self.skip_embed_dim_check:
            assert (
                embed_dim == self.embed_dim
            ), f"query dim {embed_dim} != {self.embed_dim}"
        assert list(query.size()) == [tgt_len, bsz, embed_dim]
        if key is not None:
            src_len, key_bsz, _ = key.size()
            if not torch.jit.is_scripting():
                assert value is not None
                assert src_len, key_bsz == value.shape[:2]

        if (
            not self.onnx_trace
            and not is_tpu  # don't use PyTorch version on TPUs
            and incremental_state is None
            and not static_kv
            # A workaround for quantization to work. Otherwise JIT compilation
            # treats bias in linear module as method.
            and not torch.jit.is_scripting()
            # The Multihead attention implemented in pytorch forces strong dimension check
            # for input embedding dimention and K,Q,V projection dimension.
            # Since pruning will break the dimension check and it is not easy to modify the pytorch API,
            # it is preferred to bypass the pytorch MHA when we need to skip embed_dim_check
            and not self.skip_embed_dim_check
        ):
            assert key is not None and value is not None

            if self.use_xformers:
                return self._xformers_attn_forward(
                    query, key, value, key_padding_mask, need_weights, attn_mask
                )

            else:
                return F.multi_head_attention_forward(
                    query,
                    key,
                    value,
                    self.embed_dim,
                    self.num_heads,
                    torch.empty([0]),
                    torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)),
                    self.bias_k,
                    self.bias_v,
                    self.add_zero_attn,
                    self.dropout_module.p,
                    self.out_proj.weight,
                    self.out_proj.bias,
                    self.training or self.dropout_module.apply_during_inference,
                    key_padding_mask,
                    need_weights,
                    attn_mask,
                    use_separate_proj_weight=True,
                    q_proj_weight=self.q_proj.weight,
                    k_proj_weight=self.k_proj.weight,
                    v_proj_weight=self.v_proj.weight,
                )

        if incremental_state is not None:
            saved_state = self._get_input_buffer(incremental_state)
            if saved_state is not None and "prev_key" in saved_state:
                # previous time steps are cached - no need to recompute
                # key and value if they are static
                if static_kv:
                    assert self.encoder_decoder_attention and not self.self_attention
                    key = value = None
        else:
            saved_state = None

        if self.self_attention:
            q = self.q_proj(query)
            k = self.k_proj(query)
            v = self.v_proj(query)
        elif self.encoder_decoder_attention:
            # encoder-decoder attention
            q = self.q_proj(query)
            if key is None:
                assert value is None
                k = v = None
            else:
                if self.beam_size > 1 and bsz == key.size(1):
                    # key is [T, bsz*beam_size, C], reduce to [T, bsz, C]
                    key = key.view(key.size(0), -1, self.beam_size, key.size(2))[
                        :, :, 0, :
                    ]
                    if key_padding_mask is not None:
                        key_padding_mask = key_padding_mask.view(
                            -1, self.beam_size, key_padding_mask.size(1)
                        )[:, 0, :]
                k = self.k_proj(key)
                v = self.v_proj(key)

        else:
            assert key is not None and value is not None
            q = self.q_proj(query)
            k = self.k_proj(key)
            v = self.v_proj(value)
        q *= self.scaling

        if self.bias_k is not None:
            assert self.bias_v is not None
            k, v, attn_mask, key_padding_mask = self._add_bias(
                k, v, attn_mask, key_padding_mask, bsz
            )

        q = (
            q.contiguous()
            .view(tgt_len, bsz * self.num_heads, self.head_dim)
            .transpose(0, 1)
        )
        kv_bsz = bsz  # need default value for scripting
        if k is not None:
            kv_bsz = k.size(1)
            k = (
                k.contiguous()
                .view(-1, kv_bsz * self.num_heads, self.head_dim)
                .transpose(0, 1)
            )
        if v is not None:
            v = (
                v.contiguous()
                .view(-1, kv_bsz * self.num_heads, self.head_dim)
                .transpose(0, 1)
            )

        if saved_state is not None:
            # saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
            if "prev_key" in saved_state:
                _prev_key = saved_state["prev_key"]
                assert _prev_key is not None
                kv_bsz = _prev_key.size(0)
                prev_key = _prev_key.view(kv_bsz * self.num_heads, -1, self.head_dim)
                if static_kv:
                    k = prev_key
                else:
                    assert k is not None
                    k = torch.cat([prev_key, k], dim=1)
                src_len = k.size(1)
            if "prev_value" in saved_state:
                _prev_value = saved_state["prev_value"]
                assert _prev_value is not None
                assert kv_bsz == _prev_value.size(0)
                prev_value = _prev_value.view(
                    kv_bsz * self.num_heads, -1, self.head_dim
                )
                if static_kv:
                    v = prev_value
                else:
                    assert v is not None
                    v = torch.cat([prev_value, v], dim=1)
            prev_key_padding_mask: Optional[Tensor] = None
            if "prev_key_padding_mask" in saved_state:
                prev_key_padding_mask = saved_state["prev_key_padding_mask"]
            assert k is not None and v is not None
            key_padding_mask = MultiheadAttention._append_prev_key_padding_mask(
                key_padding_mask=key_padding_mask,
                prev_key_padding_mask=prev_key_padding_mask,
                batch_size=kv_bsz,
                src_len=k.size(1),
                static_kv=static_kv,
            )

            saved_state["prev_key"] = k.view(kv_bsz, self.num_heads, -1, self.head_dim)
            saved_state["prev_value"] = v.view(
                kv_bsz, self.num_heads, -1, self.head_dim
            )
            saved_state["prev_key_padding_mask"] = key_padding_mask
            # In this branch incremental_state is never None
            assert incremental_state is not None
            incremental_state = self._set_input_buffer(incremental_state, saved_state)
        assert k is not None
        assert k.size(1) == src_len

        # This is part of a workaround to get around fork/join parallelism
        # not supporting Optional types.
        if key_padding_mask is not None and key_padding_mask.dim() == 0:
            key_padding_mask = None

        if key_padding_mask is not None:
            assert key_padding_mask.size(0) == kv_bsz
            assert key_padding_mask.size(1) == src_len

        if self.add_zero_attn:
            assert v is not None
            src_len += 1
            k, v, key_padding_mask, attn_mask = self._append_zero_attn(
                k=k, v=v, key_padding_mask=key_padding_mask, attn_mask=attn_mask
            )

        if self.encoder_decoder_attention and bsz != kv_bsz:
            attn_weights = torch.einsum(
                "bxhtd,bhsd->bxhts",
                q.view((kv_bsz, -1, self.num_heads) + q.size()[1:]),
                k.view((kv_bsz, self.num_heads) + k.size()[1:]),
            )
            attn_weights = attn_weights.reshape((-1,) + attn_weights.size()[-2:])
        else:
            attn_weights = torch.bmm(q, k.transpose(1, 2))
        attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)

        assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]

        if attn_mask is not None:
            attn_mask = attn_mask.unsqueeze(0)
            if self.onnx_trace:
                attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1)
            attn_weights += attn_mask

        if key_padding_mask is not None:
            # don't attend to padding symbols
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            if not is_tpu:
                attn_weights = attn_weights.view(
                    kv_bsz, -1, self.num_heads, tgt_len, src_len
                )
                attn_weights = attn_weights.masked_fill(
                    key_padding_mask.unsqueeze(1)
                    .unsqueeze(2)
                    .unsqueeze(3)
                    .to(torch.bool),
                    float("-inf"),
                )
            else:
                attn_weights = attn_weights.transpose(0, 2)
                attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf"))
                attn_weights = attn_weights.transpose(0, 2)
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        if before_softmax:
            return attn_weights, v

        attn_weights_float = softmax(
            attn_weights, dim=-1, onnx_trace=self.onnx_trace
        )
        attn_weights = attn_weights_float.type_as(attn_weights)
        attn_probs = self.dropout_module(attn_weights)

        assert v is not None
        if self.encoder_decoder_attention and bsz != kv_bsz:
            attn = torch.einsum(
                "bxhts,bhsd->bxhtd",
                attn_probs.view(
                    (
                        kv_bsz,
                        -1,
                        self.num_heads,
                    )
                    + attn_probs.size()[1:]
                ),
                v.view(
                    (
                        kv_bsz,
                        self.num_heads,
                    )
                    + v.size()[1:]
                ),
            )
            attn = attn.reshape((-1,) + attn.size()[-2:])
        else:
            attn = torch.bmm(attn_probs, v)
        assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
        if self.onnx_trace and attn.size(1) == 1:
            # when ONNX tracing a single decoder step (sequence length == 1)
            # the transpose is a no-op copy before view, thus unnecessary
            attn = attn.contiguous().view(tgt_len, bsz, self.embed_dim)
        else:
            attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, self.embed_dim)
        attn = self.out_proj(attn)
        attn_weights: Optional[Tensor] = None
        if need_weights:
            attn_weights = attn_weights_float.view(
                bsz, self.num_heads, tgt_len, src_len
            ).transpose(1, 0)
            if not need_head_weights:
                # average attention weights over heads
                attn_weights = attn_weights.mean(dim=0)

        return attn, attn_weights

    @staticmethod
    def _append_prev_key_padding_mask(

        key_padding_mask: Optional[Tensor],

        prev_key_padding_mask: Optional[Tensor],

        batch_size: int,

        src_len: int,

        static_kv: bool,

    ) -> Optional[Tensor]:
        # saved key padding masks have shape (bsz, seq_len)
        if prev_key_padding_mask is not None and static_kv:
            new_key_padding_mask = prev_key_padding_mask
        elif prev_key_padding_mask is not None and key_padding_mask is not None:
            new_key_padding_mask = torch.cat(
                [prev_key_padding_mask.float(), key_padding_mask.float()], dim=1
            )
        # During incremental decoding, as the padding token enters and
        # leaves the frame, there will be a time when prev or current
        # is None
        elif prev_key_padding_mask is not None:
            if src_len > prev_key_padding_mask.size(1):
                filler = torch.zeros(
                    (batch_size, src_len - prev_key_padding_mask.size(1)),
                    device=prev_key_padding_mask.device,
                )
                new_key_padding_mask = torch.cat(
                    [prev_key_padding_mask.float(), filler.float()], dim=1
                )
            else:
                new_key_padding_mask = prev_key_padding_mask.float()
        elif key_padding_mask is not None:
            if src_len > key_padding_mask.size(1):
                filler = torch.zeros(
                    (batch_size, src_len - key_padding_mask.size(1)),
                    device=key_padding_mask.device,
                )
                new_key_padding_mask = torch.cat(
                    [filler.float(), key_padding_mask.float()], dim=1
                )
            else:
                new_key_padding_mask = key_padding_mask.float()
        else:
            new_key_padding_mask = prev_key_padding_mask
        return new_key_padding_mask

    @torch.jit.export
    def reorder_incremental_state(

        self,

        incremental_state: Dict[str, Dict[str, Optional[Tensor]]],

        new_order: Tensor,

    ):
        """Reorder buffered internal state (for incremental generation)."""
        input_buffer = self._get_input_buffer(incremental_state)
        if input_buffer is not None:
            for k in input_buffer.keys():
                input_buffer_k = input_buffer[k]
                if input_buffer_k is not None:
                    if self.encoder_decoder_attention:
                        if input_buffer_k.size(0) * self.beam_size == new_order.size(0):
                            return incremental_state
                        elif self.beam_size > 1:
                            input_buffer[k] = input_buffer_k.index_select(
                                0,
                                new_order.reshape(-1, self.beam_size)[:, 0]
                                // self.beam_size,
                            )
                        else:
                            input_buffer[k] = input_buffer_k.index_select(0, new_order)
                    else:
                        input_buffer[k] = input_buffer_k.index_select(0, new_order)
            incremental_state = self._set_input_buffer(incremental_state, input_buffer)
        return incremental_state

    def set_beam_size(self, beam_size):
        """Used for effiecient beamable enc-dec attention"""
        self.beam_size = beam_size

    def _get_input_buffer(

        self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]

    ) -> Dict[str, Optional[Tensor]]:
        result = self.get_incremental_state(incremental_state, "attn_state")
        if result is not None:
            return result
        else:
            empty_result: Dict[str, Optional[Tensor]] = {}
            return empty_result

    def _set_input_buffer(

        self,

        incremental_state: Dict[str, Dict[str, Optional[Tensor]]],

        buffer: Dict[str, Optional[Tensor]],

    ):
        return self.set_incremental_state(incremental_state, "attn_state", buffer)

    def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int):
        return attn_weights

    def upgrade_state_dict_named(self, state_dict, name):
        prefix = name + "." if name != "" else ""
        items_to_add = {}
        keys_to_remove = []
        for k in state_dict.keys():
            if k.endswith(prefix + "in_proj_weight"):
                # in_proj_weight used to be q + k + v with same dimensions
                dim = int(state_dict[k].shape[0] / 3)
                items_to_add[prefix + "q_proj.weight"] = state_dict[k][:dim]
                items_to_add[prefix + "k_proj.weight"] = state_dict[k][dim : 2 * dim]
                items_to_add[prefix + "v_proj.weight"] = state_dict[k][2 * dim :]

                keys_to_remove.append(k)

                k_bias = prefix + "in_proj_bias"
                if k_bias in state_dict.keys():
                    dim = int(state_dict[k].shape[0] / 3)
                    items_to_add[prefix + "q_proj.bias"] = state_dict[k_bias][:dim]
                    items_to_add[prefix + "k_proj.bias"] = state_dict[k_bias][
                        dim : 2 * dim
                    ]
                    items_to_add[prefix + "v_proj.bias"] = state_dict[k_bias][2 * dim :]

                    keys_to_remove.append(prefix + "in_proj_bias")

        for k in keys_to_remove:
            del state_dict[k]

        for key, value in items_to_add.items():
            state_dict[key] = value

@dataclass
class QuantNoiseConfig:
    _name: str = "transformer"
    pq: float = 0.0
    pq_block_size: int = 8
    scalar: float = 0.0

    def to_dict(self):
        return asdict(self)

    @classmethod
    def from_dict(cls, data):
        return cls(**data)

@dataclass
class EncDecBaseConfig:
    _name: str = "transformer"
    embed_path: Optional[str] = None
    embed_dim: int = 768
    ffn_embed_dim: int = 3072
    layers: int = 12
    attention_heads: int = 12
    normalize_before: bool = False
    learned_pos: bool = False
    layerdrop: float = 0.0
    layers_to_keep: Optional[list[int]] = None
    xformers_att_config: Optional[dict] = None
    quant_noise: QuantNoiseConfig = field(default_factory=QuantNoiseConfig)
    padding_idx= 1
    vocab_size = 64001


@dataclass
class DecoderConfig(EncDecBaseConfig):
    input_dim: int = 768
    output_dim: int = 768
    vocab_size = 528

@dataclass
class TransformerConfig:
    _name: str = "transformer"
    activation_fn: str = "relu"
    dropout: float = 0.1
    attention_dropout: float = 0.1
    activation_dropout: float = 0.0
    adaptive_input: bool = False
    encoder: EncDecBaseConfig = field(default_factory=EncDecBaseConfig)
    max_source_positions: int = 1024
    decoder: DecoderConfig = field(default_factory=DecoderConfig)
    max_target_positions: int = 1024
    share_decoder_input_output_embed: bool = True
    share_all_embeddings: bool = False
    no_token_positional_embeddings: bool = False
    adaptive_softmax_cutoff: Optional[list[int]] = None
    adaptive_softmax_dropout: float = 0.0
    adaptive_softmax_factor: int = 4
    layernorm_embedding: bool = False
    tie_adaptive_weights: bool = False
    tie_adaptive_proj: bool = False
    no_scale_embedding: bool = False
    checkpoint_activations: bool = False
    offload_activations: bool = False
    no_cross_attention: bool = False
    cross_self_attention: bool = False
    quant_noise: QuantNoiseConfig = field(default_factory=QuantNoiseConfig)
    min_params_to_wrap: int = 100_000_000
    char_inputs: bool = False
    relu_dropout: float = 0.0
    base_layers: int = 0
    base_sublayers: int = 1
    base_shuffle: int = 1
    export: bool = False
    no_decoder_final_norm: bool = False

# Example of instantiating the config
main_config = TransformerConfig()


class TokenEmbedding(nn.Module):
    def __init__(self, vocab_size, embed_dim, padding_idx):
        super().__init__()
        self.embedding = nn.Embedding(vocab_size, embed_dim, padding_idx)
        self.vocab_size = vocab_size
        self.embedding_dim = embed_dim
        self.padding_idx = padding_idx

    def forward(self, input_tokens):
        return self.embedding(input_tokens)

# Example Usage
def initialize_embed_tokens(cfg, model='encoder'):
    """

    Initialize the embed_tokens layer.



    Args:

        cfg: Configuration object

        dictionary: Vocabulary dictionary with token-to-index mapping



    Returns:

        embed_tokens: Token embedding layer

    """
    vocab_size = cfg.encoder.vocab_size if model == 'encoder' else cfg.decoder.vocab_size # Assuming this attribute is added in the config
    embed_dim = cfg.encoder.embed_dim  # Assuming this attribute is added in the config
    padding_idx = cfg.encoder.padding_idx #dictionary.pad()  # Fetch the padding index from the dictionary
    return TokenEmbedding(vocab_size, embed_dim, padding_idx)


class EncoderDecoderModel(nn.Module):
    """Standalone Encoder-Decoder model for Fairseq with necessary functionalities."""

    def __init__(self, cfg):
        super().__init__()
        self.cfg = cfg
        self.encoder = TransformerEncoderBase(cfg, enc_dictionary, encoder_embedding.embedding)
        self.decoder = TransformerDecoderBase(cfg, dec_dictionary, decoder_embedding.embedding)
        self.supports_align_args = True
        self._is_generation_fast = False

    def forward(self, src_tokens, src_lengths, prev_output_tokens, **kwargs):
        """

        Perform a forward pass.



        Args:

            src_tokens (LongTensor): Source tokens `(batch, src_len)`

            src_lengths (LongTensor): Source lengths `(batch)`

            prev_output_tokens (LongTensor): Previous decoder outputs `(batch, tgt_len)`



        Returns:

            Tuple: decoder output and additional info

        """
        encoder_out = self.encoder(src_tokens, src_lengths=src_lengths,
                                   **kwargs)
        decoder_out = self.decoder(
            prev_output_tokens, encoder_out=encoder_out, **kwargs
        )
        return decoder_out

    def forward_decoder(self, prev_output_tokens, **kwargs):
        return self.decoder(prev_output_tokens, **kwargs)



    def output_layer(self, features, **kwargs):
        """Project features to the default output size (typically vocabulary size)."""
        return self.decoder.output_layer(features, **kwargs)

    def max_positions(self):
        """Maximum length supported by the model."""
        return (self.encoder.max_positions(), self.decoder.max_positions())

    def max_decoder_positions(self):
        """Maximum length supported by the decoder."""
        return self.decoder.max_positions()






encoder_embedding = initialize_embed_tokens(main_config)
decoder_embedding = initialize_embed_tokens(main_config, 'decoder')
enc_dictionary = [9]* main_config.encoder.vocab_size
dec_dictionary = [9] * main_config.decoder.vocab_size


class AfroLidForSequenceClassification(PreTrainedModel):
    config_class = AfroLidConfig
    base_model_prefix = "transformer"

    def __init__(self, config):
        super().__init__(config)
        self.cfg = main_config
        self.encoder = TransformerEncoderBase(self.cfg, enc_dictionary, encoder_embedding.embedding)
        self.decoder = TransformerDecoderBase(self.cfg, dec_dictionary, decoder_embedding.embedding)
        self.supports_align_args = True
        self._is_generation_fast = False

    def forward(self, src_tokens, src_lengths, prev_output_tokens, **kwargs):
        """

        Perform a forward pass.



        Args:

            src_tokens (LongTensor): Source tokens `(batch, src_len)`

            src_lengths (LongTensor): Source lengths `(batch)`

            prev_output_tokens (LongTensor): Previous decoder outputs `(batch, tgt_len)`



        Returns:

            Tuple: decoder output and additional info

        """
        encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs)
        decoder_out = self.decoder(
            prev_output_tokens, encoder_out=encoder_out, **kwargs
        )
        return decoder_out

    def forward_decoder(self, prev_output_tokens, **kwargs):
        return self.decoder(prev_output_tokens, **kwargs)



    def output_layer(self, features, **kwargs):
        """Project features to the default output size (typically vocabulary size)."""
        return self.decoder.output_layer(features, **kwargs)

    def max_positions(self):
        """Maximum length supported by the model."""
        return (self.encoder.max_positions(), self.decoder.max_positions())

    def max_decoder_positions(self):
        """Maximum length supported by the decoder."""
        return self.decoder.max_positions()


config = AfroLidConfig()
afrolid_model = AfroLidForSequenceClassification(config)
AutoConfig.register("afrolid", AfroLidConfig)
AutoModel.register(AfroLidConfig, AfroLidForSequenceClassification)
AutoModelForSequenceClassification.register(
    AfroLidConfig, AfroLidForSequenceClassification)