willdampier commited on
Commit
98da196
·
1 Parent(s): a2343ec

adding examples to readmes

Browse files
Files changed (1) hide show
  1. README.md +59 -6
README.md CHANGED
@@ -1,12 +1,15 @@
1
  ---
2
- license: mit
3
 
4
  widget:
5
- - text: 'C T R P N N N T R K S I R I Q R G P G R A F V T I G K I G N M R Q A H C'
 
6
  - text: 'C T R P N N N T R K S I H I G P G R A F Y T T G Q I I G D I R Q A Y C'
7
- - text: 'C T R P N N N T R R S I R I G P G Q A F Y A T G D I I G D I R Q A H C'
8
- - text: 'C G R P N N H R I K G L R I G P G R A F F A M G A I G G G E I R Q A H C'
9
-
 
 
10
  ---
11
 
12
  # Model Card for [HIV_V3_bodysite]
@@ -40,7 +43,57 @@ This tool was trained using the Los Alamos HIV sequence dataset (https://www.hiv
40
 
41
  ## How to use
42
 
43
- *Need to add*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
  ## Training Data
46
 
 
1
  ---
2
+ licepredictor
3
 
4
  widget:
5
+ prtext-classification T R P N N N T R K S I R I Q R G P G R A F V T I G K I G N M R Q A H C'
6
+ example_title: "V3 Macrophage"
7
  - text: 'C T R P N N N T R K S I H I G P G R A F Y T T G Q I I G D I R Q A Y C'
8
+ example_title: "V3 T-cell"
9
+
10
+ datasets:
11
+ - damlab/HIV_V3_bodysitepredictor:
12
+ - accuractext-classificationorN N N T R K S I R I Q R G P G R A F V T I G K I G N M R Q A H C
13
  ---
14
 
15
  # Model Card for [HIV_V3_bodysite]
 
43
 
44
  ## How to use
45
 
46
+ This model is able to predict the likely bodysite from a V3 sequence.
47
+ This may be use for surveillance of cells that are emerging from latent reservoirs.
48
+ Remember, a sequence can come from multiple sites, they are not mutually exclusive.
49
+ ```python
50
+ from transformers import pipeline
51
+
52
+ predictor = pipeline("text-classification", model="damlab/HIV_V3_bodysite")
53
+ predictor(f"C T R P N N N T R K S I R I Q R G P G R A F V T I G K I G N M R Q A H C")
54
+
55
+ [
56
+ [
57
+ {
58
+ "label": "periphery-tcell",
59
+ "score": 0.29097115993499756
60
+ },
61
+ {
62
+ "label": "periphery-monocyte",
63
+ "score": 0.014322502538561821
64
+ },
65
+ {
66
+ "label": "CNS",
67
+ "score": 0.06870711594820023
68
+ },
69
+ {
70
+ "label": "breast-milk",
71
+ "score": 0.002785981632769108
72
+ },
73
+ {
74
+ "label": "female-genitals",
75
+ "score": 0.024997007101774216
76
+ },
77
+ {
78
+ "label": "male-genitals",
79
+ "score": 0.01040483545511961
80
+ },
81
+ {
82
+ "label": "gastric",
83
+ "score": 0.06872137635946274
84
+ },
85
+ {
86
+ "label": "lung",
87
+ "score": 0.04432062804698944
88
+ },
89
+ {
90
+ "label": "organ",
91
+ "score": 0.47476938366889954
92
+ }
93
+ ]
94
+ ]
95
+
96
+ ```
97
 
98
  ## Training Data
99