--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer datasets: - SetFit/sst2 metrics: - accuracy widget: - text: a noble failure . - text: ms. seigner and mr. serrault bring fresh , unforced naturalism to their characters . - text: 'nothing can detract from the affection of that moral favorite : friends will be friends through thick and thin .' - text: confuses its message with an ultimate desire to please , and contorting itself into an idea of expectation is the last thing any of these three actresses , nor their characters , deserve . - text: despite its promising cast of characters , big trouble remains a loosely tied series of vignettes which only prove that ` zany ' does n't necessarily mean ` funny . ' pipeline_tag: text-classification inference: true base_model: BAAI/bge-small-en-v1.5 model-index: - name: SetFit with BAAI/bge-small-en-v1.5 results: - task: type: text-classification name: Text Classification dataset: name: SetFit/sst2 type: SetFit/sst2 split: test metrics: - type: accuracy value: 0.8841743119266054 name: Accuracy --- # SetFit with BAAI/bge-small-en-v1.5 This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [SetFit/sst2](https://huggingface.co/datasets/SetFit/sst2) dataset that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) - **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes - **Training Dataset:** [SetFit/sst2](https://huggingface.co/datasets/SetFit/sst2) ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 |