Commit
·
9934ff0
1
Parent(s):
c86e545
Upload 5 files
Browse files- README.md +37 -0
- config (1).json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 251.74 +/- 20.65
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config (1).json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1f08d732e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1f08d73370>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1f08d73400>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1f08d73490>", "_build": "<function ActorCriticPolicy._build at 0x7f1f08d73520>", "forward": "<function ActorCriticPolicy.forward at 0x7f1f08d735b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1f08d73640>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1f08d736d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1f08d73760>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1f08d737f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1f08d73880>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1f08d73910>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1f08d80300>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1704723939865701745, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZgTr1cv3a6ZuQ+u7F4BLe1y4A7mNRZOgAAgD8AAIA/MB+YPq3SFD9ON7y9zs3ovsjQ2T0YUUq9AAAAAAAAAADmgnS9uB7fuTVYRby6cyy8b4WCO9yzFT0AAIA/AAAAAJqFgDwUrqq6D/+qOsTaYLbeBw+7pctYtQAAgD8AAIA/gOoLvcGxKz41arI6ZYZkvkDQBz7qtDg8AAAAAAAAAACzNHc9XEstuj8/pbtxBak2/sK1OwKsHrYAAIA/AACAPw0TQL471YC840VGvJqGkbpl6989SmZoOwAAgD8AAIA/mrnLO3G5fDpLlU68xdAoPTHeiDnLQDu8AACAPwAAgD9mXn27j6ZyutoDazqjV7+3e0cdusoZhrkAAIA/AACAP03lSr3DBSG621VOuys8hrY8ky672NBtOgAAgD8AAIA/Rud9Pg18eT4G7au+fo2LvpA+WTyECzG+AAAAAAAAAADNGSA94YSHumBwxzscP004ic1WOhMrELgAAIA/AACAPzP3l7xcF1W6bjldO7NEPDYsv+s6HAeBugAAgD8AAIA/zeSWu65H27p2EnQ8mtAovVwYvrtebRO+AAAAAAAAgD/NVpk89iwcuo7liLrN9qU1cyqqu6vtE7UAAIA/AACAPwBLqjxc8x66wudePC4OkzZbzlQ7pXOMNQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF/0DJEH+qCMAWyUTegDjAF0lEdAl6VSjcmBv3V9lChoBkdAXLlK6FuejGgHTegDaAhHQJemHvuw5eZ1fZQoaAZHQGO/hTwUg0VoB03oA2gIR0CXsQtm+TNddX2UKGgGR0Bh4LTz/ZM+aAdN6ANoCEdAl7qme18b73V9lChoBkdAXr5+G47Rv2gHTegDaAhHQJe7lNVR1ox1fZQoaAZHQGMuTVDrqt5oB03oA2gIR0CXwRdDpkf+dX2UKGgGR0BkhJC0F8ohaAdN6ANoCEdAl8GsP4EfT3V9lChoBkdAYmnZ9uxbCGgHTegDaAhHQJfK/6N2ki51fZQoaAZHQGUh7mlqJuVoB03oA2gIR0CXy09nbqQjdX2UKGgGR0BhILUCq6vraAdN6ANoCEdAl8t8ERrad3V9lChoBkdAYn4EeyRjjWgHTegDaAhHQJfLsyIpH7R1fZQoaAZHQFzhX2M85jpoB03oA2gIR0CXzxyVObiIdX2UKGgGR0Bg53wLE1l5aAdN6ANoCEdAl89V3Y+SsHV9lChoBkdAXzqs5n13+2gHTegDaAhHQJfRxlkH2RJ1fZQoaAZHQEFfZh8YyftoB0uKaAhHQJfSZxn3+Mt1fZQoaAZHQGPvzLGJemhoB03oA2gIR0CX0/+HrQgLdX2UKGgGR0Bjz3MyJsO5aAdNEANoCEdAl9nPjsD4g3V9lChoBkdAZDpV6u4gBGgHTegDaAhHQJgIUatLcsV1fZQoaAZHQGBSW7OE/SpoB03oA2gIR0CYEquXeFcqdX2UKGgGR0BWYiOmzjWDaAdN6ANoCEdAmB4ZFgDzRXV9lChoBkdAY1ncpsoDxWgHTegDaAhHQJgqbYRNATt1fZQoaAZHQGTDK8Djin5oB03oA2gIR0CYK0q/ub7TdX2UKGgGR0BlO/Dcdo38aAdN6ANoCEdAmC/hHww0wnV9lChoBkdAWyUPkJa7mWgHTegDaAhHQJgwTH80k4Z1fZQoaAZHQF5BiPyTY/VoB03oA2gIR0CYOEqoqCpWdX2UKGgGR0BgRo7YChexaAdN6ANoCEdAmDie/QBxP3V9lChoBkdAYcOoCMglnmgHTegDaAhHQJg5EJkXk5p1fZQoaAZHQFea1IRRMvhoB03oA2gIR0CYPOb1RLsbdX2UKGgGR0Bh0mbG3nZCaAdN6ANoCEdAmD0hyCFsYXV9lChoBkdAXjNlI3BHkWgHTegDaAhHQJg/ryqdYnx1fZQoaAZHQGZ0L4nF5v9oB03oA2gIR0CYQE2c8TzvdX2UKGgGR0Bmg5lar3j/aAdN6ANoCEdAmEH0aMrEtXV9lChoBkdAYNGBqbjLjmgHTegDaAhHQJhHU3AEdNp1fZQoaAZHQF+MIZZSvTxoB03oA2gIR0CYSGHNHH3ldX2UKGgGR0BizyX2M85kaAdN6ANoCEdAmID6DXe3yHV9lChoBkdAXvxkhA4XGmgHTegDaAhHQJiOfxqfvnd1fZQoaAZHQGbF7aZhKDloB03oA2gIR0CYmeV/+bVjdX2UKGgGR0BjQX1QIldDaAdN6ANoCEdAmJqNepn6EnV9lChoBkdAZCydqcmShmgHTegDaAhHQJiemEBbOeJ1fZQoaAZHQGVGg93bEgpoB03oA2gIR0CYnv59E1EWdX2UKGgGR0Aw0krwvxpdaAdLe2gIR0CYovHN5dGBdX2UKGgGR0BhU3j6vaDgaAdN6ANoCEdAmKdarWAf+3V9lChoBkdAZFj2Cdz4lGgHTegDaAhHQJinsmReTmp1fZQoaAZHQGYaN7BwdbRoB03oA2gIR0CYqCG34Kx+dX2UKGgGR0BlwBPsRg7YaAdN6ANoCEdAmKxDN+so2HV9lChoBkdAYqZag2606mgHTegDaAhHQJisgfCAMDx1fZQoaAZHQFhezHjp9qloB03oA2gIR0CYrzlz2exwdX2UKGgGR0BjumFpPAO8aAdN6ANoCEdAmK/mp2ll9XV9lChoBkdAYv5mKZUkwGgHTegDaAhHQJixc9FF2FF1fZQoaAZHQGDhoegctGxoB03oA2gIR0CYtypGnXNDdX2UKGgGR0Ba6+xKQJXyaAdN6ANoCEdAmLhanJkoW3V9lChoBkdAZfKYZ2pyZWgHTegDaAhHQJjwiRU3n6l1fZQoaAZHQFmuEzfrKNhoB03oA2gIR0CY/37FsHjZdX2UKGgGR0Bhlk1TBInSaAdN6ANoCEdAmQnKtDD0lXV9lChoBkdAYmoKmbb1y2gHTegDaAhHQJkOz/CIk7h1fZQoaAZHQGGZv1DjR2NoB03oA2gIR0CZDz4iHIp6dX2UKGgGR0BgLNuaWom5aAdN6ANoCEdAmRNxyXD3unV9lChoBkdAYv6Myad+X2gHTegDaAhHQJkXvHbRF7V1fZQoaAZHQGHJrsKLKmtoB03oA2gIR0CZGBRzijtYdX2UKGgGR0BlydkOI68yaAdN6ANoCEdAmRh7eyiVSnV9lChoBkfAbeKAAhje9GgHTZQDaAhHQJkbb6JqIrR1fZQoaAZHQFn33fAKv3doB03oA2gIR0CZHExEfDDTdX2UKGgGR0BnNAMpgCwKaAdN6ANoCEdAmRx+mixmkHV9lChoBkdAXZlYDDCP62gHTegDaAhHQJke1zwMH8l1fZQoaAZHQGEhrux8lX1oB03oA2gIR0CZIQaxX4j9dX2UKGgGR0BmTLAaef7KaAdN6ANoCEdAmShs6FM7EHV9lChoBkdAYuYu/UONHmgHTegDaAhHQJkqEmReTmp1fZQoaAZHQGJeWTX8O09oB03oA2gIR0CZZONcGC7LdX2UKGgGR0Bj4un4wh4daAdN6ANoCEdAmXDjiXIEKXV9lChoBkdAZrzJq7Ack2gHTegDaAhHQJl7DzreImB1fZQoaAZHQGHtEhRqGlBoB03oA2gIR0CZf7bM5fdAdX2UKGgGR0BkyV9YwIt2aAdN6ANoCEdAmYAZwKjSHHV9lChoBkdAXqddNWU8m2gHTegDaAhHQJmD+PmxMWZ1fZQoaAZHQGTkWIGhVVBoB03oA2gIR0CZiA3hn8KpdX2UKGgGR0BjfWxrzoU0aAdN6ANoCEdAmYhfnbItDnV9lChoBkdAY23KDCgsb2gHTegDaAhHQJmIxFG5MDh1fZQoaAZHQFa3hMajveBoB03oA2gIR0CZi/B8x9G7dX2UKGgGR0BgHe0PYnOTaAdN6ANoCEdAmY1RCUornXV9lChoBkdAYgj21UlzEWgHTegDaAhHQJmNnvE0iyJ1fZQoaAZHQGLFCCaqjrRoB03oA2gIR0CZkVBcAzYVdX2UKGgGR0Bjs8yP+4smaAdN6ANoCEdAmZS9O6/Zd3V9lChoBkdAYzgyhzvJBGgHTegDaAhHQJmbvfj0cwR1fZQoaAZHQGKXRD9fkWBoB03oA2gIR0CZnO1Oj7AMdX2UKGgGR0BdXftQbdadaAdN6ANoCEdAmdd6HO8kEHV9lChoBkdAY9AxQizLOmgHTegDaAhHQJni0/gR9PV1fZQoaAZHQF6AbZezD4xoB03oA2gIR0CZ7DCJXQt0dX2UKGgGR0Bi3mLzf779aAdN6ANoCEdAmfD45Lh73XV9lChoBkdAY0yM6zVtoGgHTegDaAhHQJnxYbDMvAZ1fZQoaAZHQF9nlA/s3Q5oB03oA2gIR0CZ9gxbB42TdX2UKGgGR0BgtP+85CF9aAdN6ANoCEdAmfugRPGhmHV9lChoBkdAYWw8mKIi1WgHTegDaAhHQJn8Df3vhIh1fZQoaAZHQGIne/QBxPxoB03oA2gIR0CZ/I+49X9zdX2UKGgGR0BkV6TyJ9ApaAdN6ANoCEdAmgBvPomoi3V9lChoBkdAZZ2/r0J4S2gHTegDaAhHQJoBWz1K5Cp1fZQoaAZHQGHwtrTH80loB03oA2gIR0CaAZ9QXQ+mdX2UKGgGR0BgtJ/y5I6KaAdN6ANoCEdAmgRWf029+XV9lChoBkdAYpZErGza9WgHTegDaAhHQJoGwoXsPat1fZQoaAZHQFFTYigTRIBoB0u4aAhHQJoLcyWRigF1fZQoaAZHQGWWW69TP0JoB03oA2gIR0CaDRxxT850dX2UKGgGR0BgK4i5d4VzaAdN6ANoCEdAmg5j94u9OHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.994, "gae_lambda": 0.95, "ent_coef": 0.05, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+pmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd2eb17fe7174499c7217f27bc58057340b8271ca76a325ff1e172d125f633aa
|
3 |
+
size 148068
|
replay.mp4
ADDED
Binary file (183 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 251.73652629999998, "std_reward": 20.645486941219072, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-01-08T14:54:25.420507"}
|