{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1f08d80300>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1704726127501127907, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOaMvb0pQAS66zBxvi8z27Yn9xo6U51GNgAAAAAAAIA/Zvr3vPZYULogYkW7J2uGOFGNB7vtw8w5AACAPwAAgD+zkzO9hcPYuWLsDDsNnRO3XnYVvEf7JroAAIA/AACAP/NXdL7XNgy7q8BiOzQAuDd1Ny88+D94uAAAgD8AAIA/gO1LvVxnQboK0QW8kKuBtCNrMLv+I/IzAACAPwAAgD/Glj++JOSKP6XO877WViq/tih9vqnpqL0AAAAAAAAAAKbySr5DpHG8xkolvJUFRbr4DtI9d1EgOwAAgD8AAIA/AO4fvMNpXLr3qo077xvRtfOcG7pqG6O6AACAPwAAgD/mgdc9SFm8OfAWyrtwvxw263/hOp4hlrUAAIA/AACAPzv5w77U1O28i4iFO2O9y7cocxo9SzXoOgAAgD8AAIA/AFdCva7ll7ruerC65imttj4Rf7qQPhw2AACAPwAAgD8ao5i99oAruhp0Lbwnirq2jNoiO52lKjYAAIA/AACAPzPDkLtcPwm6ywZDO2UljjYcZQ27zp9jugAAgD8AAIA/WrJrvrSIMj7Eoa8+HR7Pvll28LyWvwA+AAAAAAAAAADt0lo+JPydPwQuFj/JSRO/gfNfPkR8pz4AAAAAAAAAAE1Y5b29OHA8hrhgPkSair5LXcC8QkLLPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGbPxDTjNpyMAWyUTegDjAF0lEdArzwRXIU8FXV9lChoBkdAZ2hhxYJVsGgHTegDaAhHQK89xigkC3h1fZQoaAZHQEFbLmp2ll9oB0tfaAhHQK8+qRHPNV11fZQoaAZHQGTG5xBE8aJoB03oA2gIR0CvP75ggHNYdX2UKGgGR0BoxJL0z0pWaAdN6ANoCEdAr0Fdf/m1Y3V9lChoBkdAYvSz0HyEtmgHTegDaAhHQK9CWxfOUt91fZQoaAZHQGZQoIWxhUloB03oA2gIR0CvQxfCQ9zPdX2UKGgGR0A3DR8+iaiLaAdLXmgIR0CvReVwxWT5dX2UKGgGR0Bi7POlfqoqaAdN6ANoCEdAr0ix3zMA3nV9lChoBkdAZKms8xKxs2gHTegDaAhHQK9J20IkZ751fZQoaAZHQF2LbLlmvntoB03oA2gIR0CvSuHeSB9UdX2UKGgGR0BNOV9Wp6yCaAdLYWgIR0CvZP5AyEcsdX2UKGgGR0BjXvFWGRFJaAdN6ANoCEdAr2Un+yZ8bHV9lChoBkdAZXANRWLgoGgHTegDaAhHQK9nUUqx1Pp1fZQoaAZHQGhzIAGSpzdoB03oA2gIR0Cvbp6FEiMYdX2UKGgGR0Bn59bX6InCaAdN6ANoCEdAr3BsHObAlHV9lChoBkdAaWD0uDjBEmgHTegDaAhHQK9x7u/Dcdp1fZQoaAZHQEBp71qWTotoB0tWaAhHQK9zJ7Y02tN1fZQoaAZHQGWX7B42S+xoB03oA2gIR0CvdM3Adn01dX2UKGgGR0BlTj4WUKRdaAdN6ANoCEdAr3Urlgc94nV9lChoBkdAZnWBNEgGKWgHTegDaAhHQK93c6FM7EJ1fZQoaAZHQGLiGG21D0FoB03oA2gIR0CveLrRSgoPdX2UKGgGR0BoBhdIGyHEaAdN6ANoCEdAr3pGA5JbuHV9lChoBkdAXWz6Hj6vaGgHTegDaAhHQK98eRIz3yt1fZQoaAZHQGLm66BiCrdoB03oA2gIR0CvfgdgF5fMdX2UKGgGR0BlRjEtNBWxaAdN6ANoCEdAr4A1tKqXGHV9lChoBkdAZva76pHZsmgHTegDaAhHQK+DmgDA8CB1fZQoaAZHQGLud8qnWJ9oB03oA2gIR0CvhKfMwDeTdX2UKGgGR0BicFVFQVKxaAdN6ANoCEdAr4VSp71Iy3V9lChoBkdAY0ixubZvk2gHTegDaAhHQK+FfwkxASp1fZQoaAZHQGaNYBmwqy5oB03oA2gIR0CvoTFJHy3DdX2UKGgGR0BoJIsAeaKDaAdN6ANoCEdAr6gWorFwUHV9lChoBkdAYKdQEZBLPGgHTegDaAhHQK+sES2Yv391fZQoaAZHQGNatp/PPcBoB03oA2gIR0Cvrc4NqgyudX2UKGgGR0Bl35Iz3yqdaAdN6ANoCEdAr6/9gSeyzHV9lChoBkdAY/tTLns9jmgHTegDaAhHQK+wWV+I/JN1fZQoaAZHQGKIpPqLS/loB03oA2gIR0CvsiqhDgIhdX2UKGgGR0BmC0WGh24eaAdN6ANoCEdAr7MhyKekHnV9lChoBkdAQg2evpyIYWgHS3doCEdAr7OBX6qKg3V9lChoBkdAYImGC7K7qmgHTegDaAhHQK+0PXwsoUl1fZQoaAZHQGV9Vx0dRzloB03oA2gIR0Cvte61TisGdX2UKGgGR0A1w8IiTt9haAdLZWgIR0CvtgMo+fRNdX2UKGgGR0BkH0jcEeQuaAdN6ANoCEdAr7d97F85S3V9lChoBkdAZVTUuL74z2gHTegDaAhHQK+5usr/bTN1fZQoaAZHQGRRBBqsU7FoB03oA2gIR0CvvThdld1MdX2UKGgGR0BnaKdpZfUnaAdN6ANoCEdAr75gQ4CIUXV9lChoBkdAYDxFAE+xGGgHTegDaAhHQK+/GqHXVb11fZQoaAZHQGAJ4bbUPQRoB03oA2gIR0Cvv0Wi1y/9dX2UKGgGR0BgaNEiMYMwaAdN6ANoCEdAr9rN0mtyP3V9lChoBkdAM/fZmI0qIGgHS2toCEdAr9rkRvm5lXV9lChoBkdAaGnoTwlSj2gHTegDaAhHQK/jsSbpeNV1fZQoaAZHQEqJeWv8qF1oB0tXaAhHQK/moJaaCtl1fZQoaAZHQGWbDohY/3ZoB03oA2gIR0Cv5yAymALBdX2UKGgGR0BgeiqsEJSjaAdN6ANoCEdAr+hzjNpudnV9lChoBkdAXE8SWZ7Xx2gHTegDaAhHQK/qfqt5le51fZQoaAZHQGXATk6tDD1oB03oA2gIR0Cv7Iga3qiXdX2UKGgGR0Bl9ms/6frbaAdN6ANoCEdAr+4XvYvnKXV9lChoBkdAYQodn003wWgHTegDaAhHQK/u5wwTM7l1fZQoaAZHQGg+9HDrJKdoB03oA2gIR0Cv8LSgXdj5dX2UKGgGR0BmxdliBoVVaAdN6ANoCEdAr/DKQFLWZ3V9lChoBkdAYrf+QU5+6WgHTegDaAhHQK/yOTB68g91fZQoaAZHQGTTvAoG6f9oB03oA2gIR0Cv9HERjBl+dX2UKGgGR0BlXEuOCGvfaAdN6ANoCEdAr/f1cyFfzHV9lChoBkdAaHGUs4DLbGgHTegDaAhHQK/6ra0x/NJ1fZQoaAZHQGHOc3uNPxhoB03oA2gIR0Cv+vH/T9bYdX2UKGgGR0BlXzi0fHPvaAdN6ANoCEdAsAun9zfaYnV9lChoBkdAYnOc/dIoVmgHTegDaAhHQLALtgbZOBV1fZQoaAZHQGUtagdwNspoB03oA2gIR0CwELlsxfv4dX2UKGgGR0BiH8xbjcVQaAdN6ANoCEdAsBDwMqjJuHV9lChoBkdAYI512aDwpmgHTegDaAhHQLARgjjaPCF1fZQoaAZHQGPwKFAVwgloB03oA2gIR0CwEm2o3rD7dX2UKGgGR0BliYo1DSgHaAdN6ANoCEdAsBNXfixVyXV9lChoBkdAYF8KwY+B6WgHTegDaAhHQLAUCN70Fr51fZQoaAZHQGRCh06o2n9oB03oA2gIR0CwFGNucc2jdX2UKGgGR0BidI/NZ/0/aAdN6ANoCEdAsBU6Lzf78HV9lChoBkdAZkflVcUuc2gHTegDaAhHQLAVRYEW69V1fZQoaAZHQGZUcrRSgoRoB03oA2gIR0CwFix0EHMVdX2UKGgGR0Bg9InUlRgraAdN6ANoCEdAsBeZmcvugHV9lChoBkdARiyInBtUGWgHS5BoCEdAsBf5AGB4EHV9lChoBkdAYf5XT3IuG2gHTegDaAhHQLAZaJiRW911fZQoaAZHQGHFi53C9AZoB03oA2gIR0CwGkfykKu0dX2UKGgGR0BoQ44+8oQWaAdN6ANoCEdAsBpf3j+72HV9lChoBkdAZOesVclgMWgHTegDaAhHQLAbbwaisXB1fZQoaAZHQGSeJ53Tuv5oB03oA2gIR0CwG3olY2bYdX2UKGgGR0Bh35AjY7JXaAdN6ANoCEdAsC1DzvqkdnV9lChoBkdAZ4blHSWqtGgHTegDaAhHQLAtedfb9Ih1fZQoaAZHQGQGp+UhV2loB03oA2gIR0CwLhWnXNC7dX2UKGgGR0BgGsl1KXfJaAdN6ANoCEdAsC8N96Tnq3V9lChoBkdAZZwxdpqREGgHTegDaAhHQLAwSEQXhwV1fZQoaAZHQGd2MP8Q7LdoB03oA2gIR0CwMS/X05EMdX2UKGgGR0BjtznPmganaAdN6ANoCEdAsDGr+XJHRXV9lChoBkdAYv3uDSPU8WgHTegDaAhHQLAyp/XXiBJ1fZQoaAZHQGfdksjFAFBoB03oA2gIR0CwM2VvqC6IdX2UKGgGR0Bo/BClabF1aAdN6ANoCEdAsDRpX7tRenV9lChoBkdAYeP4X40uUWgHTegDaAhHQLA0pWaMJhR1fZQoaAZHQGGlMqrilzloB03oA2gIR0CwNdd7F85TdX2UKGgGR0BmA34dp7C0aAdN6ANoCEdAsDahof0VanV9lChoBkdAZRtI6r/822gHTegDaAhHQLA2uBg/keZ1fZQoaAZHQGMXVMEidJ9oB03oA2gIR0CwN7FzMibEdX2UKGgGR0BkmIoVmBe5aAdN6ANoCEdAsDe7v9cbBHVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1240, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.994, "gae_lambda": 0.95, "ent_coef": 0.05, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+pmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}