RAG_Exp / updated_rag.json
088ankit088's picture
Upload updated_rag.json with huggingface_hub
ea67211 verified
import json
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
import chromadb
from chromadb.utils import embedding_functions
def retrieve_relevant_context(user_query):
# Load the query-answer data
with open('prompt_sql_query.json', 'r') as f:
sql_query_data = json.load(f)
user_prompts = [item['prompt'] for item in sql_query_data]
best_sql_queries = [item['sql_query'] for item in sql_query_data]
relevant_tables = [item['redshift_tables'] for item in sql_query_data]
# Load a pre-trained embedding model
model_name = "sentence-transformers/all-MiniLM-L6-v2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
def encode(texts):
"""Encode a list of texts into embeddings."""
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
with torch.no_grad():
embeddings = model(**inputs).last_hidden_state[:, 0]
embeddings = F.normalize(embeddings, p=2, dim=1)
return embeddings.numpy().tolist()
# Initialize ChromaDB client
client = chromadb.PersistentClient(path="./chromadb_store")
collection = client.get_or_create_collection(name="sql_queries")
# Store embeddings in ChromaDB if not already stored
if collection.count() == 0:
for idx, prompt in enumerate(user_prompts):
embedding = encode([prompt])[0]
collection.add(embeddings=[embedding], documents=[prompt], ids=[str(idx)])
# Query ChromaDB
query_embedding = encode([user_query])[0]
results = collection.query(query_embeddings=[query_embedding], n_results=3)
retrieved_prompts = results['documents'][0]
retrieved_indices = results['ids'][0]
retrieved_sql_queries = [best_sql_queries[int(idx)] for idx in retrieved_indices]
retrieved_tables = [relevant_tables[int(idx)] for idx in retrieved_indices]
retrieved_prompt_sql_pairs = "Sample prompt - sql query pairs:\n"
for idx, prompt in enumerate(retrieved_prompts):
retrieved_prompt_sql_pairs += f"{idx + 1}. Prompt: {prompt}\n SQL Query: {retrieved_sql_queries[idx]}\n\n"
print(retrieved_prompt_sql_pairs)
query_tables = list(set([item for sublist in retrieved_tables for item in sublist]))
with open('redshift_tables.json', 'r') as f:
schema_data = json.load(f)
retrieved_tables_info = ""
for index, table in enumerate(query_tables, start=1):
retrieved_tables_info += f"{index}. {schema_data[0].get(table, 'Table schema not found')}\n\n"
print(retrieved_tables_info)
return retrieved_prompt_sql_pairs, retrieved_tables_info
# Example usage
# retrieve_relevant_context("What is the total IM device sold for DMI in first quarter of 2024?")