# 确保SOFA环境已激活! # 如果你还没激活,请先运行: # conda activate SOFA # --- 定义变量方便管理路径 --- $SOFAPython = "$env:CONDA_PREFIX\python.exe" # 使用SOFA环境的python路径 $BuildScript = "D:\DiffSingerDatasets\MakeDiffSinger\acoustic_forced_alignment\build_dataset.py" $AddScript = "D:\DiffSingerDatasets\MakeDiffSinger\variance-temp-solution\add_ph_num.py" # 修正后的路径 $InferScript = "D:\DiffSingerDatasets\MakeDiffSinger\SOME\batch_infer.py" $Dictionary = "D:\DiffSingerDatasets\SOFA\dictionary\opencpop-extension.txt" $ModelCheckpoint = "D:\DiffSingerDatasets\MakeDiffSinger\SOME\pretrained\0119_continuous256_5spk\model_ckpt_steps_100000_simplified.ckpt" $SourceDataDir = "D:\DiffSingerDatasets\255_step2_man" $OutputDatasetDir = "D:\DiffSingerDatasets\255_built_man" $SourceWavDir = Join-Path $SourceDataDir "wav" $SourceTgDir = Join-Path $SourceDataDir "TextGrid" $OutputCsvPath = Join-Path $OutputDatasetDir "transcriptions.csv" Write-Host "--- 开始处理数据集: $($SourceDataDir) ---" # --- 步骤 1: 构建基础数据集结构 --- Write-Host "`n--- 运行 build_dataset.py ---" # 确保输出目录存在 mkdir $OutputDatasetDir -Force & $SOFAPython $BuildScript --wavs $SourceWavDir --tg $SourceTgDir --dataset $OutputDatasetDir # 检查 build_dataset.py 是否成功 (简单检查CSV是否存在) if (-not (Test-Path $OutputCsvPath)) { Write-Host "!!! 错误: build_dataset.py 未能生成 $OutputCsvPath 文件。请检查上一步的输出。终止后续步骤。" -ForegroundColor Red exit 1 # 退出脚本 } # --- 步骤 2: 添加 ph_num 到 CSV --- Write-Host "`n--- 运行 add_ph_num.py ---" # add_ph_num.py 期望CSV路径作为第一个参数 & $SOFAPython $AddScript $OutputCsvPath --dictionary $Dictionary # Note: add_ph_num.py 通常不返回错误码,或者错误处理在内部。这里假设它会成功或打印警告。 # 如果需要严格检查,可以解析其标准输出来判断是否成功添加了 ph_num 列。 # --- 步骤 3: 自动音高推断 --- Write-Host "`n--- 运行 batch_infer.py (音高推断) ---" # 检查模型文件是否存在 if (-not (Test-Path $ModelCheckpoint)) { Write-Host "!!! 错误: 模型文件未找到: $($ModelCheckpoint)。跳过音高推断步骤。" -ForegroundColor Red } else { & $SOFAPython $InferScript --model $ModelCheckpoint --dataset $OutputDatasetDir --overwrite } Write-Host "`n--- 数据集处理完成: $($OutputDatasetDir) ---"