|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | $pretrained_model = "./sd-models/model.ckpt" | 
					
						
						|  | $model_type = "sd1.5" | 
					
						
						|  | $parameterization = 0 | 
					
						
						|  |  | 
					
						
						|  | $train_data_dir = "./train/aki" | 
					
						
						|  | $reg_data_dir = "" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | $network_module = "networks.lora" | 
					
						
						|  | $network_weights = "" | 
					
						
						|  | $network_dim = 32 | 
					
						
						|  | $network_alpha = 32 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | $resolution = "512,512" | 
					
						
						|  | $batch_size = 1 | 
					
						
						|  | $max_train_epoches = 10 | 
					
						
						|  | $save_every_n_epochs = 2 | 
					
						
						|  |  | 
					
						
						|  | $train_unet_only = 0 | 
					
						
						|  | $train_text_encoder_only = 0 | 
					
						
						|  | $stop_text_encoder_training = 0 | 
					
						
						|  |  | 
					
						
						|  | $noise_offset = 0 | 
					
						
						|  | $keep_tokens = 0 | 
					
						
						|  | $min_snr_gamma = 0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | $lr = "1e-4" | 
					
						
						|  | $unet_lr = "1e-4" | 
					
						
						|  | $text_encoder_lr = "1e-5" | 
					
						
						|  | $lr_scheduler = "cosine_with_restarts" | 
					
						
						|  | $lr_warmup_steps = 0 | 
					
						
						|  | $lr_restart_cycles = 1 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | $optimizer_type = "AdamW8bit" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | $output_name = "aki" | 
					
						
						|  | $save_model_as = "safetensors" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | $save_state = 0 | 
					
						
						|  | $resume = "" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | $min_bucket_reso = 256 | 
					
						
						|  | $max_bucket_reso = 1024 | 
					
						
						|  | $persistent_data_loader_workers = 1 | 
					
						
						|  | $clip_skip = 2 | 
					
						
						|  | $multi_gpu = 0 | 
					
						
						|  | $lowram = 0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | $algo = "lora" | 
					
						
						|  | $conv_dim = 4 | 
					
						
						|  | $conv_alpha = 4 | 
					
						
						|  | $dropout = "0" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | $use_wandb = 0 | 
					
						
						|  | $wandb_api_key = "" | 
					
						
						|  | $log_tracker_name = "" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | .\venv\Scripts\activate | 
					
						
						|  |  | 
					
						
						|  | $Env:HF_HOME = "huggingface" | 
					
						
						|  | $Env:XFORMERS_FORCE_DISABLE_TRITON = "1" | 
					
						
						|  | $ext_args = [System.Collections.ArrayList]::new() | 
					
						
						|  | $launch_args = [System.Collections.ArrayList]::new() | 
					
						
						|  |  | 
					
						
						|  | $trainer_file = "./scripts/train_network.py" | 
					
						
						|  |  | 
					
						
						|  | if ($model_type -eq "sd1.5") { | 
					
						
						|  | [void]$ext_args.Add("--clip_skip=$clip_skip") | 
					
						
						|  | } elseif ($model_type -eq "sd2.0") { | 
					
						
						|  | [void]$ext_args.Add("--v2") | 
					
						
						|  | } elseif ($model_type -eq "sdxl") { | 
					
						
						|  | $trainer_file = "./scripts/sdxl_train_network.py" | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | if ($multi_gpu) { | 
					
						
						|  | [void]$launch_args.Add("--multi_gpu") | 
					
						
						|  | [void]$launch_args.Add("--num_processes=2") | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | if ($lowram) { | 
					
						
						|  | [void]$ext_args.Add("--lowram") | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | if ($parameterization) { | 
					
						
						|  | [void]$ext_args.Add("--v_parameterization") | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | if ($train_unet_only) { | 
					
						
						|  | [void]$ext_args.Add("--network_train_unet_only") | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | if ($train_text_encoder_only) { | 
					
						
						|  | [void]$ext_args.Add("--network_train_text_encoder_only") | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | if ($network_weights) { | 
					
						
						|  | [void]$ext_args.Add("--network_weights=" + $network_weights) | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | if ($reg_data_dir) { | 
					
						
						|  | [void]$ext_args.Add("--reg_data_dir=" + $reg_data_dir) | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | if ($optimizer_type) { | 
					
						
						|  | [void]$ext_args.Add("--optimizer_type=" + $optimizer_type) | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | if ($optimizer_type -eq "DAdaptation") { | 
					
						
						|  | [void]$ext_args.Add("--optimizer_args") | 
					
						
						|  | [void]$ext_args.Add("decouple=True") | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | if ($network_module -eq "lycoris.kohya") { | 
					
						
						|  | [void]$ext_args.Add("--network_args") | 
					
						
						|  | [void]$ext_args.Add("conv_dim=$conv_dim") | 
					
						
						|  | [void]$ext_args.Add("conv_alpha=$conv_alpha") | 
					
						
						|  | [void]$ext_args.Add("algo=$algo") | 
					
						
						|  | [void]$ext_args.Add("dropout=$dropout") | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | if ($noise_offset -ne 0) { | 
					
						
						|  | [void]$ext_args.Add("--noise_offset=$noise_offset") | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | if ($stop_text_encoder_training -ne 0) { | 
					
						
						|  | [void]$ext_args.Add("--stop_text_encoder_training=$stop_text_encoder_training") | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | if ($save_state -eq 1) { | 
					
						
						|  | [void]$ext_args.Add("--save_state") | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | if ($resume) { | 
					
						
						|  | [void]$ext_args.Add("--resume=" + $resume) | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | if ($min_snr_gamma -ne 0) { | 
					
						
						|  | [void]$ext_args.Add("--min_snr_gamma=$min_snr_gamma") | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | if ($persistent_data_loader_workers) { | 
					
						
						|  | [void]$ext_args.Add("--persistent_data_loader_workers") | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | if ($use_wandb -eq 1) { | 
					
						
						|  | [void]$ext_args.Add("--log_with=all") | 
					
						
						|  | if ($wandb_api_key) { | 
					
						
						|  | [void]$ext_args.Add("--wandb_api_key=" + $wandb_api_key) | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | if ($log_tracker_name) { | 
					
						
						|  | [void]$ext_args.Add("--log_tracker_name=" + $log_tracker_name) | 
					
						
						|  | } | 
					
						
						|  | } | 
					
						
						|  | else { | 
					
						
						|  | [void]$ext_args.Add("--log_with=tensorboard") | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | python -m accelerate.commands.launch $launch_args --num_cpu_threads_per_process=4 $trainer_file ` | 
					
						
						|  | --enable_bucket ` | 
					
						
						|  | --pretrained_model_name_or_path=$pretrained_model ` | 
					
						
						|  | --train_data_dir=$train_data_dir ` | 
					
						
						|  | --output_dir="./output" ` | 
					
						
						|  | --logging_dir="./logs" ` | 
					
						
						|  | --log_prefix=$output_name ` | 
					
						
						|  | --resolution=$resolution ` | 
					
						
						|  | --network_module=$network_module ` | 
					
						
						|  | --max_train_epochs=$max_train_epoches ` | 
					
						
						|  | --learning_rate=$lr ` | 
					
						
						|  | --unet_lr=$unet_lr ` | 
					
						
						|  | --text_encoder_lr=$text_encoder_lr ` | 
					
						
						|  | --lr_scheduler=$lr_scheduler ` | 
					
						
						|  | --lr_warmup_steps=$lr_warmup_steps ` | 
					
						
						|  | --lr_scheduler_num_cycles=$lr_restart_cycles ` | 
					
						
						|  | --network_dim=$network_dim ` | 
					
						
						|  | --network_alpha=$network_alpha ` | 
					
						
						|  | --output_name=$output_name ` | 
					
						
						|  | --train_batch_size=$batch_size ` | 
					
						
						|  | --save_every_n_epochs=$save_every_n_epochs ` | 
					
						
						|  | --mixed_precision="fp16" ` | 
					
						
						|  | --save_precision="fp16" ` | 
					
						
						|  | --seed="1337" ` | 
					
						
						|  | --cache_latents ` | 
					
						
						|  | --prior_loss_weight=1 ` | 
					
						
						|  | --max_token_length=225 ` | 
					
						
						|  | --caption_extension=".txt" ` | 
					
						
						|  | --save_model_as=$save_model_as ` | 
					
						
						|  | --min_bucket_reso=$min_bucket_reso ` | 
					
						
						|  | --max_bucket_reso=$max_bucket_reso ` | 
					
						
						|  | --keep_tokens=$keep_tokens ` | 
					
						
						|  | --xformers --shuffle_caption $ext_args | 
					
						
						|  | Write-Output "Train finished" | 
					
						
						|  | Read-Host | Out-Null ; | 
					
						
						|  |  |