Upload lora-scripts/sd-scripts/tools/latent_upscaler.py with huggingface_hub
Browse files
lora-scripts/sd-scripts/tools/latent_upscaler.py
ADDED
|
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 外部から簡単にupscalerを呼ぶためのスクリプト
|
| 2 |
+
# 単体で動くようにモデル定義も含めている
|
| 3 |
+
|
| 4 |
+
import argparse
|
| 5 |
+
import glob
|
| 6 |
+
import os
|
| 7 |
+
import cv2
|
| 8 |
+
from diffusers import AutoencoderKL
|
| 9 |
+
|
| 10 |
+
from typing import Dict, List
|
| 11 |
+
import numpy as np
|
| 12 |
+
|
| 13 |
+
import torch
|
| 14 |
+
from library.device_utils import init_ipex, get_preferred_device
|
| 15 |
+
init_ipex()
|
| 16 |
+
|
| 17 |
+
from torch import nn
|
| 18 |
+
from tqdm import tqdm
|
| 19 |
+
from PIL import Image
|
| 20 |
+
from library.utils import setup_logging
|
| 21 |
+
setup_logging()
|
| 22 |
+
import logging
|
| 23 |
+
logger = logging.getLogger(__name__)
|
| 24 |
+
|
| 25 |
+
class ResidualBlock(nn.Module):
|
| 26 |
+
def __init__(self, in_channels, out_channels=None, kernel_size=3, stride=1, padding=1):
|
| 27 |
+
super(ResidualBlock, self).__init__()
|
| 28 |
+
|
| 29 |
+
if out_channels is None:
|
| 30 |
+
out_channels = in_channels
|
| 31 |
+
|
| 32 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False)
|
| 33 |
+
self.bn1 = nn.BatchNorm2d(out_channels)
|
| 34 |
+
self.relu1 = nn.ReLU(inplace=True)
|
| 35 |
+
|
| 36 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size, stride, padding, bias=False)
|
| 37 |
+
self.bn2 = nn.BatchNorm2d(out_channels)
|
| 38 |
+
|
| 39 |
+
self.relu2 = nn.ReLU(inplace=True) # このReLUはresidualに足す前にかけるほうがいいかも
|
| 40 |
+
|
| 41 |
+
# initialize weights
|
| 42 |
+
self._initialize_weights()
|
| 43 |
+
|
| 44 |
+
def _initialize_weights(self):
|
| 45 |
+
for m in self.modules():
|
| 46 |
+
if isinstance(m, nn.Conv2d):
|
| 47 |
+
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
|
| 48 |
+
if m.bias is not None:
|
| 49 |
+
nn.init.constant_(m.bias, 0)
|
| 50 |
+
elif isinstance(m, nn.BatchNorm2d):
|
| 51 |
+
nn.init.constant_(m.weight, 1)
|
| 52 |
+
nn.init.constant_(m.bias, 0)
|
| 53 |
+
elif isinstance(m, nn.Linear):
|
| 54 |
+
nn.init.normal_(m.weight, 0, 0.01)
|
| 55 |
+
nn.init.constant_(m.bias, 0)
|
| 56 |
+
|
| 57 |
+
def forward(self, x):
|
| 58 |
+
residual = x
|
| 59 |
+
|
| 60 |
+
out = self.conv1(x)
|
| 61 |
+
out = self.bn1(out)
|
| 62 |
+
out = self.relu1(out)
|
| 63 |
+
|
| 64 |
+
out = self.conv2(out)
|
| 65 |
+
out = self.bn2(out)
|
| 66 |
+
|
| 67 |
+
out += residual
|
| 68 |
+
|
| 69 |
+
out = self.relu2(out)
|
| 70 |
+
|
| 71 |
+
return out
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
class Upscaler(nn.Module):
|
| 75 |
+
def __init__(self):
|
| 76 |
+
super(Upscaler, self).__init__()
|
| 77 |
+
|
| 78 |
+
# define layers
|
| 79 |
+
# latent has 4 channels
|
| 80 |
+
|
| 81 |
+
self.conv1 = nn.Conv2d(4, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
| 82 |
+
self.bn1 = nn.BatchNorm2d(128)
|
| 83 |
+
self.relu1 = nn.ReLU(inplace=True)
|
| 84 |
+
|
| 85 |
+
# resblocks
|
| 86 |
+
# 数の暴力で20個:次元数を増やすよりもブロックを増やしたほうがreceptive fieldが広がるはずだぞ
|
| 87 |
+
self.resblock1 = ResidualBlock(128)
|
| 88 |
+
self.resblock2 = ResidualBlock(128)
|
| 89 |
+
self.resblock3 = ResidualBlock(128)
|
| 90 |
+
self.resblock4 = ResidualBlock(128)
|
| 91 |
+
self.resblock5 = ResidualBlock(128)
|
| 92 |
+
self.resblock6 = ResidualBlock(128)
|
| 93 |
+
self.resblock7 = ResidualBlock(128)
|
| 94 |
+
self.resblock8 = ResidualBlock(128)
|
| 95 |
+
self.resblock9 = ResidualBlock(128)
|
| 96 |
+
self.resblock10 = ResidualBlock(128)
|
| 97 |
+
self.resblock11 = ResidualBlock(128)
|
| 98 |
+
self.resblock12 = ResidualBlock(128)
|
| 99 |
+
self.resblock13 = ResidualBlock(128)
|
| 100 |
+
self.resblock14 = ResidualBlock(128)
|
| 101 |
+
self.resblock15 = ResidualBlock(128)
|
| 102 |
+
self.resblock16 = ResidualBlock(128)
|
| 103 |
+
self.resblock17 = ResidualBlock(128)
|
| 104 |
+
self.resblock18 = ResidualBlock(128)
|
| 105 |
+
self.resblock19 = ResidualBlock(128)
|
| 106 |
+
self.resblock20 = ResidualBlock(128)
|
| 107 |
+
|
| 108 |
+
# last convs
|
| 109 |
+
self.conv2 = nn.Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
| 110 |
+
self.bn2 = nn.BatchNorm2d(64)
|
| 111 |
+
self.relu2 = nn.ReLU(inplace=True)
|
| 112 |
+
|
| 113 |
+
self.conv3 = nn.Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
| 114 |
+
self.bn3 = nn.BatchNorm2d(64)
|
| 115 |
+
self.relu3 = nn.ReLU(inplace=True)
|
| 116 |
+
|
| 117 |
+
# final conv: output 4 channels
|
| 118 |
+
self.conv_final = nn.Conv2d(64, 4, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0))
|
| 119 |
+
|
| 120 |
+
# initialize weights
|
| 121 |
+
self._initialize_weights()
|
| 122 |
+
|
| 123 |
+
def _initialize_weights(self):
|
| 124 |
+
for m in self.modules():
|
| 125 |
+
if isinstance(m, nn.Conv2d):
|
| 126 |
+
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
|
| 127 |
+
if m.bias is not None:
|
| 128 |
+
nn.init.constant_(m.bias, 0)
|
| 129 |
+
elif isinstance(m, nn.BatchNorm2d):
|
| 130 |
+
nn.init.constant_(m.weight, 1)
|
| 131 |
+
nn.init.constant_(m.bias, 0)
|
| 132 |
+
elif isinstance(m, nn.Linear):
|
| 133 |
+
nn.init.normal_(m.weight, 0, 0.01)
|
| 134 |
+
nn.init.constant_(m.bias, 0)
|
| 135 |
+
|
| 136 |
+
# initialize final conv weights to 0: 流行りのzero conv
|
| 137 |
+
nn.init.constant_(self.conv_final.weight, 0)
|
| 138 |
+
|
| 139 |
+
def forward(self, x):
|
| 140 |
+
inp = x
|
| 141 |
+
|
| 142 |
+
x = self.conv1(x)
|
| 143 |
+
x = self.bn1(x)
|
| 144 |
+
x = self.relu1(x)
|
| 145 |
+
|
| 146 |
+
# いくつかのresblockを通した��に、residualを足すことで精度向上と学習速度向上が見込めるはず
|
| 147 |
+
residual = x
|
| 148 |
+
x = self.resblock1(x)
|
| 149 |
+
x = self.resblock2(x)
|
| 150 |
+
x = self.resblock3(x)
|
| 151 |
+
x = self.resblock4(x)
|
| 152 |
+
x = x + residual
|
| 153 |
+
residual = x
|
| 154 |
+
x = self.resblock5(x)
|
| 155 |
+
x = self.resblock6(x)
|
| 156 |
+
x = self.resblock7(x)
|
| 157 |
+
x = self.resblock8(x)
|
| 158 |
+
x = x + residual
|
| 159 |
+
residual = x
|
| 160 |
+
x = self.resblock9(x)
|
| 161 |
+
x = self.resblock10(x)
|
| 162 |
+
x = self.resblock11(x)
|
| 163 |
+
x = self.resblock12(x)
|
| 164 |
+
x = x + residual
|
| 165 |
+
residual = x
|
| 166 |
+
x = self.resblock13(x)
|
| 167 |
+
x = self.resblock14(x)
|
| 168 |
+
x = self.resblock15(x)
|
| 169 |
+
x = self.resblock16(x)
|
| 170 |
+
x = x + residual
|
| 171 |
+
residual = x
|
| 172 |
+
x = self.resblock17(x)
|
| 173 |
+
x = self.resblock18(x)
|
| 174 |
+
x = self.resblock19(x)
|
| 175 |
+
x = self.resblock20(x)
|
| 176 |
+
x = x + residual
|
| 177 |
+
|
| 178 |
+
x = self.conv2(x)
|
| 179 |
+
x = self.bn2(x)
|
| 180 |
+
x = self.relu2(x)
|
| 181 |
+
x = self.conv3(x)
|
| 182 |
+
x = self.bn3(x)
|
| 183 |
+
|
| 184 |
+
# ここにreluを入れないほうがいい気がする
|
| 185 |
+
|
| 186 |
+
x = self.conv_final(x)
|
| 187 |
+
|
| 188 |
+
# network estimates the difference between the input and the output
|
| 189 |
+
x = x + inp
|
| 190 |
+
|
| 191 |
+
return x
|
| 192 |
+
|
| 193 |
+
def support_latents(self) -> bool:
|
| 194 |
+
return False
|
| 195 |
+
|
| 196 |
+
def upscale(
|
| 197 |
+
self,
|
| 198 |
+
vae: AutoencoderKL,
|
| 199 |
+
lowreso_images: List[Image.Image],
|
| 200 |
+
lowreso_latents: torch.Tensor,
|
| 201 |
+
dtype: torch.dtype,
|
| 202 |
+
width: int,
|
| 203 |
+
height: int,
|
| 204 |
+
batch_size: int = 1,
|
| 205 |
+
vae_batch_size: int = 1,
|
| 206 |
+
):
|
| 207 |
+
# assertion
|
| 208 |
+
assert lowreso_images is not None, "Upscaler requires lowreso image"
|
| 209 |
+
|
| 210 |
+
# make upsampled image with lanczos4
|
| 211 |
+
upsampled_images = []
|
| 212 |
+
for lowreso_image in lowreso_images:
|
| 213 |
+
upsampled_image = np.array(lowreso_image.resize((width, height), Image.LANCZOS))
|
| 214 |
+
upsampled_images.append(upsampled_image)
|
| 215 |
+
|
| 216 |
+
# convert to tensor: this tensor is too large to be converted to cuda
|
| 217 |
+
upsampled_images = [torch.from_numpy(upsampled_image).permute(2, 0, 1).float() for upsampled_image in upsampled_images]
|
| 218 |
+
upsampled_images = torch.stack(upsampled_images, dim=0)
|
| 219 |
+
upsampled_images = upsampled_images.to(dtype)
|
| 220 |
+
|
| 221 |
+
# normalize to [-1, 1]
|
| 222 |
+
upsampled_images = upsampled_images / 127.5 - 1.0
|
| 223 |
+
|
| 224 |
+
# convert upsample images to latents with batch size
|
| 225 |
+
# logger.info("Encoding upsampled (LANCZOS4) images...")
|
| 226 |
+
upsampled_latents = []
|
| 227 |
+
for i in tqdm(range(0, upsampled_images.shape[0], vae_batch_size)):
|
| 228 |
+
batch = upsampled_images[i : i + vae_batch_size].to(vae.device)
|
| 229 |
+
with torch.no_grad():
|
| 230 |
+
batch = vae.encode(batch).latent_dist.sample()
|
| 231 |
+
upsampled_latents.append(batch)
|
| 232 |
+
|
| 233 |
+
upsampled_latents = torch.cat(upsampled_latents, dim=0)
|
| 234 |
+
|
| 235 |
+
# upscale (refine) latents with this model with batch size
|
| 236 |
+
logger.info("Upscaling latents...")
|
| 237 |
+
upscaled_latents = []
|
| 238 |
+
for i in range(0, upsampled_latents.shape[0], batch_size):
|
| 239 |
+
with torch.no_grad():
|
| 240 |
+
upscaled_latents.append(self.forward(upsampled_latents[i : i + batch_size]))
|
| 241 |
+
upscaled_latents = torch.cat(upscaled_latents, dim=0)
|
| 242 |
+
|
| 243 |
+
return upscaled_latents * 0.18215
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
# external interface: returns a model
|
| 247 |
+
def create_upscaler(**kwargs):
|
| 248 |
+
weights = kwargs["weights"]
|
| 249 |
+
model = Upscaler()
|
| 250 |
+
|
| 251 |
+
logger.info(f"Loading weights from {weights}...")
|
| 252 |
+
if os.path.splitext(weights)[1] == ".safetensors":
|
| 253 |
+
from safetensors.torch import load_file
|
| 254 |
+
|
| 255 |
+
sd = load_file(weights)
|
| 256 |
+
else:
|
| 257 |
+
sd = torch.load(weights, map_location=torch.device("cpu"))
|
| 258 |
+
model.load_state_dict(sd)
|
| 259 |
+
return model
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
# another interface: upscale images with a model for given images from command line
|
| 263 |
+
def upscale_images(args: argparse.Namespace):
|
| 264 |
+
DEVICE = get_preferred_device()
|
| 265 |
+
us_dtype = torch.float16 # TODO: support fp32/bf16
|
| 266 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
| 267 |
+
|
| 268 |
+
# load VAE with Diffusers
|
| 269 |
+
assert args.vae_path is not None, "VAE path is required"
|
| 270 |
+
logger.info(f"Loading VAE from {args.vae_path}...")
|
| 271 |
+
vae = AutoencoderKL.from_pretrained(args.vae_path, subfolder="vae")
|
| 272 |
+
vae.to(DEVICE, dtype=us_dtype)
|
| 273 |
+
|
| 274 |
+
# prepare model
|
| 275 |
+
logger.info("Preparing model...")
|
| 276 |
+
upscaler: Upscaler = create_upscaler(weights=args.weights)
|
| 277 |
+
# logger.info("Loading weights from", args.weights)
|
| 278 |
+
# upscaler.load_state_dict(torch.load(args.weights))
|
| 279 |
+
upscaler.eval()
|
| 280 |
+
upscaler.to(DEVICE, dtype=us_dtype)
|
| 281 |
+
|
| 282 |
+
# load images
|
| 283 |
+
image_paths = glob.glob(args.image_pattern)
|
| 284 |
+
images = []
|
| 285 |
+
for image_path in image_paths:
|
| 286 |
+
image = Image.open(image_path)
|
| 287 |
+
image = image.convert("RGB")
|
| 288 |
+
|
| 289 |
+
# make divisible by 8
|
| 290 |
+
width = image.width
|
| 291 |
+
height = image.height
|
| 292 |
+
if width % 8 != 0:
|
| 293 |
+
width = width - (width % 8)
|
| 294 |
+
if height % 8 != 0:
|
| 295 |
+
height = height - (height % 8)
|
| 296 |
+
if width != image.width or height != image.height:
|
| 297 |
+
image = image.crop((0, 0, width, height))
|
| 298 |
+
|
| 299 |
+
images.append(image)
|
| 300 |
+
|
| 301 |
+
# debug output
|
| 302 |
+
if args.debug:
|
| 303 |
+
for image, image_path in zip(images, image_paths):
|
| 304 |
+
image_debug = image.resize((image.width * 2, image.height * 2), Image.LANCZOS)
|
| 305 |
+
|
| 306 |
+
basename = os.path.basename(image_path)
|
| 307 |
+
basename_wo_ext, ext = os.path.splitext(basename)
|
| 308 |
+
dest_file_name = os.path.join(args.output_dir, f"{basename_wo_ext}_lanczos4{ext}")
|
| 309 |
+
image_debug.save(dest_file_name)
|
| 310 |
+
|
| 311 |
+
# upscale
|
| 312 |
+
logger.info("Upscaling...")
|
| 313 |
+
upscaled_latents = upscaler.upscale(
|
| 314 |
+
vae, images, None, us_dtype, width * 2, height * 2, batch_size=args.batch_size, vae_batch_size=args.vae_batch_size
|
| 315 |
+
)
|
| 316 |
+
upscaled_latents /= 0.18215
|
| 317 |
+
|
| 318 |
+
# decode with batch
|
| 319 |
+
logger.info("Decoding...")
|
| 320 |
+
upscaled_images = []
|
| 321 |
+
for i in tqdm(range(0, upscaled_latents.shape[0], args.vae_batch_size)):
|
| 322 |
+
with torch.no_grad():
|
| 323 |
+
batch = vae.decode(upscaled_latents[i : i + args.vae_batch_size]).sample
|
| 324 |
+
batch = batch.to("cpu")
|
| 325 |
+
upscaled_images.append(batch)
|
| 326 |
+
upscaled_images = torch.cat(upscaled_images, dim=0)
|
| 327 |
+
|
| 328 |
+
# tensor to numpy
|
| 329 |
+
upscaled_images = upscaled_images.permute(0, 2, 3, 1).numpy()
|
| 330 |
+
upscaled_images = (upscaled_images + 1.0) * 127.5
|
| 331 |
+
upscaled_images = upscaled_images.clip(0, 255).astype(np.uint8)
|
| 332 |
+
|
| 333 |
+
upscaled_images = upscaled_images[..., ::-1]
|
| 334 |
+
|
| 335 |
+
# save images
|
| 336 |
+
for i, image in enumerate(upscaled_images):
|
| 337 |
+
basename = os.path.basename(image_paths[i])
|
| 338 |
+
basename_wo_ext, ext = os.path.splitext(basename)
|
| 339 |
+
dest_file_name = os.path.join(args.output_dir, f"{basename_wo_ext}_upscaled{ext}")
|
| 340 |
+
cv2.imwrite(dest_file_name, image)
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
if __name__ == "__main__":
|
| 344 |
+
parser = argparse.ArgumentParser()
|
| 345 |
+
parser.add_argument("--vae_path", type=str, default=None, help="VAE path")
|
| 346 |
+
parser.add_argument("--weights", type=str, default=None, help="Weights path")
|
| 347 |
+
parser.add_argument("--image_pattern", type=str, default=None, help="Image pattern")
|
| 348 |
+
parser.add_argument("--output_dir", type=str, default=".", help="Output directory")
|
| 349 |
+
parser.add_argument("--batch_size", type=int, default=4, help="Batch size")
|
| 350 |
+
parser.add_argument("--vae_batch_size", type=int, default=1, help="VAE batch size")
|
| 351 |
+
parser.add_argument("--debug", action="store_true", help="Debug mode")
|
| 352 |
+
|
| 353 |
+
args = parser.parse_args()
|
| 354 |
+
upscale_images(args)
|