Upload lora-scripts/sd-scripts/library/slicing_vae.py with huggingface_hub
Browse files
lora-scripts/sd-scripts/library/slicing_vae.py
ADDED
|
@@ -0,0 +1,682 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from Diffusers to reduce VRAM usage
|
| 2 |
+
|
| 3 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
from dataclasses import dataclass
|
| 17 |
+
from typing import Optional, Tuple, Union
|
| 18 |
+
|
| 19 |
+
import numpy as np
|
| 20 |
+
import torch
|
| 21 |
+
import torch.nn as nn
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 25 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 26 |
+
from diffusers.models.unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block
|
| 27 |
+
from diffusers.models.vae import DecoderOutput, DiagonalGaussianDistribution
|
| 28 |
+
from diffusers.models.autoencoder_kl import AutoencoderKLOutput
|
| 29 |
+
from .utils import setup_logging
|
| 30 |
+
setup_logging()
|
| 31 |
+
import logging
|
| 32 |
+
logger = logging.getLogger(__name__)
|
| 33 |
+
|
| 34 |
+
def slice_h(x, num_slices):
|
| 35 |
+
# slice with pad 1 both sides: to eliminate side effect of padding of conv2d
|
| 36 |
+
# Conv2dのpaddingの副作用を排除するために、両側にpad 1しながらHをスライスする
|
| 37 |
+
# NCHWでもNHWCでもどちらでも動く
|
| 38 |
+
size = (x.shape[2] + num_slices - 1) // num_slices
|
| 39 |
+
sliced = []
|
| 40 |
+
for i in range(num_slices):
|
| 41 |
+
if i == 0:
|
| 42 |
+
sliced.append(x[:, :, : size + 1, :])
|
| 43 |
+
else:
|
| 44 |
+
end = size * (i + 1) + 1
|
| 45 |
+
if x.shape[2] - end < 3: # if the last slice is too small, use the rest of the tensor 最後が細すぎるとconv2dできないので全部使う
|
| 46 |
+
end = x.shape[2]
|
| 47 |
+
sliced.append(x[:, :, size * i - 1 : end, :])
|
| 48 |
+
if end >= x.shape[2]:
|
| 49 |
+
break
|
| 50 |
+
return sliced
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def cat_h(sliced):
|
| 54 |
+
# padding分を除いて結合する
|
| 55 |
+
cat = []
|
| 56 |
+
for i, x in enumerate(sliced):
|
| 57 |
+
if i == 0:
|
| 58 |
+
cat.append(x[:, :, :-1, :])
|
| 59 |
+
elif i == len(sliced) - 1:
|
| 60 |
+
cat.append(x[:, :, 1:, :])
|
| 61 |
+
else:
|
| 62 |
+
cat.append(x[:, :, 1:-1, :])
|
| 63 |
+
del x
|
| 64 |
+
x = torch.cat(cat, dim=2)
|
| 65 |
+
return x
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def resblock_forward(_self, num_slices, input_tensor, temb, **kwargs):
|
| 69 |
+
assert _self.upsample is None and _self.downsample is None
|
| 70 |
+
assert _self.norm1.num_groups == _self.norm2.num_groups
|
| 71 |
+
assert temb is None
|
| 72 |
+
|
| 73 |
+
# make sure norms are on cpu
|
| 74 |
+
org_device = input_tensor.device
|
| 75 |
+
cpu_device = torch.device("cpu")
|
| 76 |
+
_self.norm1.to(cpu_device)
|
| 77 |
+
_self.norm2.to(cpu_device)
|
| 78 |
+
|
| 79 |
+
# GroupNormがCPUでfp16で動かない対策
|
| 80 |
+
org_dtype = input_tensor.dtype
|
| 81 |
+
if org_dtype == torch.float16:
|
| 82 |
+
_self.norm1.to(torch.float32)
|
| 83 |
+
_self.norm2.to(torch.float32)
|
| 84 |
+
|
| 85 |
+
# すべてのテンソルをCPUに移動する
|
| 86 |
+
input_tensor = input_tensor.to(cpu_device)
|
| 87 |
+
hidden_states = input_tensor
|
| 88 |
+
|
| 89 |
+
# どうもこれは結果が異なるようだ……
|
| 90 |
+
# def sliced_norm1(norm, x):
|
| 91 |
+
# num_div = 4 if up_block_idx <= 2 else x.shape[1] // norm.num_groups
|
| 92 |
+
# sliced_tensor = torch.chunk(x, num_div, dim=1)
|
| 93 |
+
# sliced_weight = torch.chunk(norm.weight, num_div, dim=0)
|
| 94 |
+
# sliced_bias = torch.chunk(norm.bias, num_div, dim=0)
|
| 95 |
+
# logger.info(sliced_tensor[0].shape, num_div, sliced_weight[0].shape, sliced_bias[0].shape)
|
| 96 |
+
# normed_tensor = []
|
| 97 |
+
# for i in range(num_div):
|
| 98 |
+
# n = torch.group_norm(sliced_tensor[i], norm.num_groups, sliced_weight[i], sliced_bias[i], norm.eps)
|
| 99 |
+
# normed_tensor.append(n)
|
| 100 |
+
# del n
|
| 101 |
+
# x = torch.cat(normed_tensor, dim=1)
|
| 102 |
+
# return num_div, x
|
| 103 |
+
|
| 104 |
+
# normを分割すると結果が変わるので、ここだけは分割しない。GPUで計算するとVRAMが足りなくなるので、CPUで計算する。幸いCPUでもそこまで遅くない
|
| 105 |
+
if org_dtype == torch.float16:
|
| 106 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 107 |
+
hidden_states = _self.norm1(hidden_states) # run on cpu
|
| 108 |
+
if org_dtype == torch.float16:
|
| 109 |
+
hidden_states = hidden_states.to(torch.float16)
|
| 110 |
+
|
| 111 |
+
sliced = slice_h(hidden_states, num_slices)
|
| 112 |
+
del hidden_states
|
| 113 |
+
|
| 114 |
+
for i in range(len(sliced)):
|
| 115 |
+
x = sliced[i]
|
| 116 |
+
sliced[i] = None
|
| 117 |
+
|
| 118 |
+
# 計算する部分だけGPUに移動する、以下同様
|
| 119 |
+
x = x.to(org_device)
|
| 120 |
+
x = _self.nonlinearity(x)
|
| 121 |
+
x = _self.conv1(x)
|
| 122 |
+
x = x.to(cpu_device)
|
| 123 |
+
sliced[i] = x
|
| 124 |
+
del x
|
| 125 |
+
|
| 126 |
+
hidden_states = cat_h(sliced)
|
| 127 |
+
del sliced
|
| 128 |
+
|
| 129 |
+
if org_dtype == torch.float16:
|
| 130 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 131 |
+
hidden_states = _self.norm2(hidden_states) # run on cpu
|
| 132 |
+
if org_dtype == torch.float16:
|
| 133 |
+
hidden_states = hidden_states.to(torch.float16)
|
| 134 |
+
|
| 135 |
+
sliced = slice_h(hidden_states, num_slices)
|
| 136 |
+
del hidden_states
|
| 137 |
+
|
| 138 |
+
for i in range(len(sliced)):
|
| 139 |
+
x = sliced[i]
|
| 140 |
+
sliced[i] = None
|
| 141 |
+
|
| 142 |
+
x = x.to(org_device)
|
| 143 |
+
x = _self.nonlinearity(x)
|
| 144 |
+
x = _self.dropout(x)
|
| 145 |
+
x = _self.conv2(x)
|
| 146 |
+
x = x.to(cpu_device)
|
| 147 |
+
sliced[i] = x
|
| 148 |
+
del x
|
| 149 |
+
|
| 150 |
+
hidden_states = cat_h(sliced)
|
| 151 |
+
del sliced
|
| 152 |
+
|
| 153 |
+
# make shortcut
|
| 154 |
+
if _self.conv_shortcut is not None:
|
| 155 |
+
sliced = list(torch.chunk(input_tensor, num_slices, dim=2)) # no padding in conv_shortcut パディングがないので普通にスライスする
|
| 156 |
+
del input_tensor
|
| 157 |
+
|
| 158 |
+
for i in range(len(sliced)):
|
| 159 |
+
x = sliced[i]
|
| 160 |
+
sliced[i] = None
|
| 161 |
+
|
| 162 |
+
x = x.to(org_device)
|
| 163 |
+
x = _self.conv_shortcut(x)
|
| 164 |
+
x = x.to(cpu_device)
|
| 165 |
+
sliced[i] = x
|
| 166 |
+
del x
|
| 167 |
+
|
| 168 |
+
input_tensor = torch.cat(sliced, dim=2)
|
| 169 |
+
del sliced
|
| 170 |
+
|
| 171 |
+
output_tensor = (input_tensor + hidden_states) / _self.output_scale_factor
|
| 172 |
+
|
| 173 |
+
output_tensor = output_tensor.to(org_device) # 次のレイヤーがGPUで計算する
|
| 174 |
+
return output_tensor
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
class SlicingEncoder(nn.Module):
|
| 178 |
+
def __init__(
|
| 179 |
+
self,
|
| 180 |
+
in_channels=3,
|
| 181 |
+
out_channels=3,
|
| 182 |
+
down_block_types=("DownEncoderBlock2D",),
|
| 183 |
+
block_out_channels=(64,),
|
| 184 |
+
layers_per_block=2,
|
| 185 |
+
norm_num_groups=32,
|
| 186 |
+
act_fn="silu",
|
| 187 |
+
double_z=True,
|
| 188 |
+
num_slices=2,
|
| 189 |
+
):
|
| 190 |
+
super().__init__()
|
| 191 |
+
self.layers_per_block = layers_per_block
|
| 192 |
+
|
| 193 |
+
self.conv_in = torch.nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1)
|
| 194 |
+
|
| 195 |
+
self.mid_block = None
|
| 196 |
+
self.down_blocks = nn.ModuleList([])
|
| 197 |
+
|
| 198 |
+
# down
|
| 199 |
+
output_channel = block_out_channels[0]
|
| 200 |
+
for i, down_block_type in enumerate(down_block_types):
|
| 201 |
+
input_channel = output_channel
|
| 202 |
+
output_channel = block_out_channels[i]
|
| 203 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 204 |
+
|
| 205 |
+
down_block = get_down_block(
|
| 206 |
+
down_block_type,
|
| 207 |
+
num_layers=self.layers_per_block,
|
| 208 |
+
in_channels=input_channel,
|
| 209 |
+
out_channels=output_channel,
|
| 210 |
+
add_downsample=not is_final_block,
|
| 211 |
+
resnet_eps=1e-6,
|
| 212 |
+
downsample_padding=0,
|
| 213 |
+
resnet_act_fn=act_fn,
|
| 214 |
+
resnet_groups=norm_num_groups,
|
| 215 |
+
attention_head_dim=output_channel,
|
| 216 |
+
temb_channels=None,
|
| 217 |
+
)
|
| 218 |
+
self.down_blocks.append(down_block)
|
| 219 |
+
|
| 220 |
+
# mid
|
| 221 |
+
self.mid_block = UNetMidBlock2D(
|
| 222 |
+
in_channels=block_out_channels[-1],
|
| 223 |
+
resnet_eps=1e-6,
|
| 224 |
+
resnet_act_fn=act_fn,
|
| 225 |
+
output_scale_factor=1,
|
| 226 |
+
resnet_time_scale_shift="default",
|
| 227 |
+
attention_head_dim=block_out_channels[-1],
|
| 228 |
+
resnet_groups=norm_num_groups,
|
| 229 |
+
temb_channels=None,
|
| 230 |
+
)
|
| 231 |
+
self.mid_block.attentions[0].set_use_memory_efficient_attention_xformers(True) # とりあえずDiffusersのxformersを使う
|
| 232 |
+
|
| 233 |
+
# out
|
| 234 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
|
| 235 |
+
self.conv_act = nn.SiLU()
|
| 236 |
+
|
| 237 |
+
conv_out_channels = 2 * out_channels if double_z else out_channels
|
| 238 |
+
self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)
|
| 239 |
+
|
| 240 |
+
# replace forward of ResBlocks
|
| 241 |
+
def wrapper(func, module, num_slices):
|
| 242 |
+
def forward(*args, **kwargs):
|
| 243 |
+
return func(module, num_slices, *args, **kwargs)
|
| 244 |
+
|
| 245 |
+
return forward
|
| 246 |
+
|
| 247 |
+
self.num_slices = num_slices
|
| 248 |
+
div = num_slices / (2 ** (len(self.down_blocks) - 1)) # 深い層はそこまで分割しなくていいので適宜減らす
|
| 249 |
+
# logger.info(f"initial divisor: {div}")
|
| 250 |
+
if div >= 2:
|
| 251 |
+
div = int(div)
|
| 252 |
+
for resnet in self.mid_block.resnets:
|
| 253 |
+
resnet.forward = wrapper(resblock_forward, resnet, div)
|
| 254 |
+
# midblock doesn't have downsample
|
| 255 |
+
|
| 256 |
+
for i, down_block in enumerate(self.down_blocks[::-1]):
|
| 257 |
+
if div >= 2:
|
| 258 |
+
div = int(div)
|
| 259 |
+
# logger.info(f"down block: {i} divisor: {div}")
|
| 260 |
+
for resnet in down_block.resnets:
|
| 261 |
+
resnet.forward = wrapper(resblock_forward, resnet, div)
|
| 262 |
+
if down_block.downsamplers is not None:
|
| 263 |
+
# logger.info("has downsample")
|
| 264 |
+
for downsample in down_block.downsamplers:
|
| 265 |
+
downsample.forward = wrapper(self.downsample_forward, downsample, div * 2)
|
| 266 |
+
div *= 2
|
| 267 |
+
|
| 268 |
+
def forward(self, x):
|
| 269 |
+
sample = x
|
| 270 |
+
del x
|
| 271 |
+
|
| 272 |
+
org_device = sample.device
|
| 273 |
+
cpu_device = torch.device("cpu")
|
| 274 |
+
|
| 275 |
+
# sample = self.conv_in(sample)
|
| 276 |
+
sample = sample.to(cpu_device)
|
| 277 |
+
sliced = slice_h(sample, self.num_slices)
|
| 278 |
+
del sample
|
| 279 |
+
|
| 280 |
+
for i in range(len(sliced)):
|
| 281 |
+
x = sliced[i]
|
| 282 |
+
sliced[i] = None
|
| 283 |
+
|
| 284 |
+
x = x.to(org_device)
|
| 285 |
+
x = self.conv_in(x)
|
| 286 |
+
x = x.to(cpu_device)
|
| 287 |
+
sliced[i] = x
|
| 288 |
+
del x
|
| 289 |
+
|
| 290 |
+
sample = cat_h(sliced)
|
| 291 |
+
del sliced
|
| 292 |
+
|
| 293 |
+
sample = sample.to(org_device)
|
| 294 |
+
|
| 295 |
+
# down
|
| 296 |
+
for down_block in self.down_blocks:
|
| 297 |
+
sample = down_block(sample)
|
| 298 |
+
|
| 299 |
+
# middle
|
| 300 |
+
sample = self.mid_block(sample)
|
| 301 |
+
|
| 302 |
+
# post-process
|
| 303 |
+
# ここも省メモリ化したいが、恐らくそこまでメモリを食わないので省略
|
| 304 |
+
sample = self.conv_norm_out(sample)
|
| 305 |
+
sample = self.conv_act(sample)
|
| 306 |
+
sample = self.conv_out(sample)
|
| 307 |
+
|
| 308 |
+
return sample
|
| 309 |
+
|
| 310 |
+
def downsample_forward(self, _self, num_slices, hidden_states):
|
| 311 |
+
assert hidden_states.shape[1] == _self.channels
|
| 312 |
+
assert _self.use_conv and _self.padding == 0
|
| 313 |
+
logger.info(f"downsample forward {num_slices} {hidden_states.shape}")
|
| 314 |
+
|
| 315 |
+
org_device = hidden_states.device
|
| 316 |
+
cpu_device = torch.device("cpu")
|
| 317 |
+
|
| 318 |
+
hidden_states = hidden_states.to(cpu_device)
|
| 319 |
+
pad = (0, 1, 0, 1)
|
| 320 |
+
hidden_states = torch.nn.functional.pad(hidden_states, pad, mode="constant", value=0)
|
| 321 |
+
|
| 322 |
+
# slice with even number because of stride 2
|
| 323 |
+
# strideが2なので偶数でスライスする
|
| 324 |
+
# slice with pad 1 both sides: to eliminate side effect of padding of conv2d
|
| 325 |
+
size = (hidden_states.shape[2] + num_slices - 1) // num_slices
|
| 326 |
+
size = size + 1 if size % 2 == 1 else size
|
| 327 |
+
|
| 328 |
+
sliced = []
|
| 329 |
+
for i in range(num_slices):
|
| 330 |
+
if i == 0:
|
| 331 |
+
sliced.append(hidden_states[:, :, : size + 1, :])
|
| 332 |
+
else:
|
| 333 |
+
end = size * (i + 1) + 1
|
| 334 |
+
if hidden_states.shape[2] - end < 4: # if the last slice is too small, use the rest of the tensor
|
| 335 |
+
end = hidden_states.shape[2]
|
| 336 |
+
sliced.append(hidden_states[:, :, size * i - 1 : end, :])
|
| 337 |
+
if end >= hidden_states.shape[2]:
|
| 338 |
+
break
|
| 339 |
+
del hidden_states
|
| 340 |
+
|
| 341 |
+
for i in range(len(sliced)):
|
| 342 |
+
x = sliced[i]
|
| 343 |
+
sliced[i] = None
|
| 344 |
+
|
| 345 |
+
x = x.to(org_device)
|
| 346 |
+
x = _self.conv(x)
|
| 347 |
+
x = x.to(cpu_device)
|
| 348 |
+
|
| 349 |
+
# ここだけ雰囲気が違うのはCopilotのせい
|
| 350 |
+
if i == 0:
|
| 351 |
+
hidden_states = x
|
| 352 |
+
else:
|
| 353 |
+
hidden_states = torch.cat([hidden_states, x], dim=2)
|
| 354 |
+
|
| 355 |
+
hidden_states = hidden_states.to(org_device)
|
| 356 |
+
# logger.info(f"downsample forward done {hidden_states.shape}")
|
| 357 |
+
return hidden_states
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
class SlicingDecoder(nn.Module):
|
| 361 |
+
def __init__(
|
| 362 |
+
self,
|
| 363 |
+
in_channels=3,
|
| 364 |
+
out_channels=3,
|
| 365 |
+
up_block_types=("UpDecoderBlock2D",),
|
| 366 |
+
block_out_channels=(64,),
|
| 367 |
+
layers_per_block=2,
|
| 368 |
+
norm_num_groups=32,
|
| 369 |
+
act_fn="silu",
|
| 370 |
+
num_slices=2,
|
| 371 |
+
):
|
| 372 |
+
super().__init__()
|
| 373 |
+
self.layers_per_block = layers_per_block
|
| 374 |
+
|
| 375 |
+
self.conv_in = nn.Conv2d(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1)
|
| 376 |
+
|
| 377 |
+
self.mid_block = None
|
| 378 |
+
self.up_blocks = nn.ModuleList([])
|
| 379 |
+
|
| 380 |
+
# mid
|
| 381 |
+
self.mid_block = UNetMidBlock2D(
|
| 382 |
+
in_channels=block_out_channels[-1],
|
| 383 |
+
resnet_eps=1e-6,
|
| 384 |
+
resnet_act_fn=act_fn,
|
| 385 |
+
output_scale_factor=1,
|
| 386 |
+
resnet_time_scale_shift="default",
|
| 387 |
+
attention_head_dim=block_out_channels[-1],
|
| 388 |
+
resnet_groups=norm_num_groups,
|
| 389 |
+
temb_channels=None,
|
| 390 |
+
)
|
| 391 |
+
self.mid_block.attentions[0].set_use_memory_efficient_attention_xformers(True) # とりあえずDiffusersのxformersを使う
|
| 392 |
+
|
| 393 |
+
# up
|
| 394 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
| 395 |
+
output_channel = reversed_block_out_channels[0]
|
| 396 |
+
for i, up_block_type in enumerate(up_block_types):
|
| 397 |
+
prev_output_channel = output_channel
|
| 398 |
+
output_channel = reversed_block_out_channels[i]
|
| 399 |
+
|
| 400 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 401 |
+
|
| 402 |
+
up_block = get_up_block(
|
| 403 |
+
up_block_type,
|
| 404 |
+
num_layers=self.layers_per_block + 1,
|
| 405 |
+
in_channels=prev_output_channel,
|
| 406 |
+
out_channels=output_channel,
|
| 407 |
+
prev_output_channel=None,
|
| 408 |
+
add_upsample=not is_final_block,
|
| 409 |
+
resnet_eps=1e-6,
|
| 410 |
+
resnet_act_fn=act_fn,
|
| 411 |
+
resnet_groups=norm_num_groups,
|
| 412 |
+
attention_head_dim=output_channel,
|
| 413 |
+
temb_channels=None,
|
| 414 |
+
)
|
| 415 |
+
self.up_blocks.append(up_block)
|
| 416 |
+
prev_output_channel = output_channel
|
| 417 |
+
|
| 418 |
+
# out
|
| 419 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
|
| 420 |
+
self.conv_act = nn.SiLU()
|
| 421 |
+
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
|
| 422 |
+
|
| 423 |
+
# replace forward of ResBlocks
|
| 424 |
+
def wrapper(func, module, num_slices):
|
| 425 |
+
def forward(*args, **kwargs):
|
| 426 |
+
return func(module, num_slices, *args, **kwargs)
|
| 427 |
+
|
| 428 |
+
return forward
|
| 429 |
+
|
| 430 |
+
self.num_slices = num_slices
|
| 431 |
+
div = num_slices / (2 ** (len(self.up_blocks) - 1))
|
| 432 |
+
logger.info(f"initial divisor: {div}")
|
| 433 |
+
if div >= 2:
|
| 434 |
+
div = int(div)
|
| 435 |
+
for resnet in self.mid_block.resnets:
|
| 436 |
+
resnet.forward = wrapper(resblock_forward, resnet, div)
|
| 437 |
+
# midblock doesn't have upsample
|
| 438 |
+
|
| 439 |
+
for i, up_block in enumerate(self.up_blocks):
|
| 440 |
+
if div >= 2:
|
| 441 |
+
div = int(div)
|
| 442 |
+
# logger.info(f"up block: {i} divisor: {div}")
|
| 443 |
+
for resnet in up_block.resnets:
|
| 444 |
+
resnet.forward = wrapper(resblock_forward, resnet, div)
|
| 445 |
+
if up_block.upsamplers is not None:
|
| 446 |
+
# logger.info("has upsample")
|
| 447 |
+
for upsample in up_block.upsamplers:
|
| 448 |
+
upsample.forward = wrapper(self.upsample_forward, upsample, div * 2)
|
| 449 |
+
div *= 2
|
| 450 |
+
|
| 451 |
+
def forward(self, z):
|
| 452 |
+
sample = z
|
| 453 |
+
del z
|
| 454 |
+
sample = self.conv_in(sample)
|
| 455 |
+
|
| 456 |
+
# middle
|
| 457 |
+
sample = self.mid_block(sample)
|
| 458 |
+
|
| 459 |
+
# up
|
| 460 |
+
for i, up_block in enumerate(self.up_blocks):
|
| 461 |
+
sample = up_block(sample)
|
| 462 |
+
|
| 463 |
+
# post-process
|
| 464 |
+
sample = self.conv_norm_out(sample)
|
| 465 |
+
sample = self.conv_act(sample)
|
| 466 |
+
|
| 467 |
+
# conv_out with slicing because of VRAM usage
|
| 468 |
+
# conv_outはとてもVRAM使うのでスライスして対応
|
| 469 |
+
org_device = sample.device
|
| 470 |
+
cpu_device = torch.device("cpu")
|
| 471 |
+
sample = sample.to(cpu_device)
|
| 472 |
+
|
| 473 |
+
sliced = slice_h(sample, self.num_slices)
|
| 474 |
+
del sample
|
| 475 |
+
for i in range(len(sliced)):
|
| 476 |
+
x = sliced[i]
|
| 477 |
+
sliced[i] = None
|
| 478 |
+
|
| 479 |
+
x = x.to(org_device)
|
| 480 |
+
x = self.conv_out(x)
|
| 481 |
+
x = x.to(cpu_device)
|
| 482 |
+
sliced[i] = x
|
| 483 |
+
sample = cat_h(sliced)
|
| 484 |
+
del sliced
|
| 485 |
+
|
| 486 |
+
sample = sample.to(org_device)
|
| 487 |
+
return sample
|
| 488 |
+
|
| 489 |
+
def upsample_forward(self, _self, num_slices, hidden_states, output_size=None):
|
| 490 |
+
assert hidden_states.shape[1] == _self.channels
|
| 491 |
+
assert _self.use_conv_transpose == False and _self.use_conv
|
| 492 |
+
|
| 493 |
+
org_dtype = hidden_states.dtype
|
| 494 |
+
org_device = hidden_states.device
|
| 495 |
+
cpu_device = torch.device("cpu")
|
| 496 |
+
|
| 497 |
+
hidden_states = hidden_states.to(cpu_device)
|
| 498 |
+
sliced = slice_h(hidden_states, num_slices)
|
| 499 |
+
del hidden_states
|
| 500 |
+
|
| 501 |
+
for i in range(len(sliced)):
|
| 502 |
+
x = sliced[i]
|
| 503 |
+
sliced[i] = None
|
| 504 |
+
|
| 505 |
+
x = x.to(org_device)
|
| 506 |
+
|
| 507 |
+
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
|
| 508 |
+
# TODO(Suraj): Remove this cast once the issue is fixed in PyTorch
|
| 509 |
+
# https://github.com/pytorch/pytorch/issues/86679
|
| 510 |
+
# PyTorch 2で直らないかね……
|
| 511 |
+
if org_dtype == torch.bfloat16:
|
| 512 |
+
x = x.to(torch.float32)
|
| 513 |
+
|
| 514 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
| 515 |
+
|
| 516 |
+
if org_dtype == torch.bfloat16:
|
| 517 |
+
x = x.to(org_dtype)
|
| 518 |
+
|
| 519 |
+
x = _self.conv(x)
|
| 520 |
+
|
| 521 |
+
# upsampleされてるのでpadは2になる
|
| 522 |
+
if i == 0:
|
| 523 |
+
x = x[:, :, :-2, :]
|
| 524 |
+
elif i == num_slices - 1:
|
| 525 |
+
x = x[:, :, 2:, :]
|
| 526 |
+
else:
|
| 527 |
+
x = x[:, :, 2:-2, :]
|
| 528 |
+
|
| 529 |
+
x = x.to(cpu_device)
|
| 530 |
+
sliced[i] = x
|
| 531 |
+
del x
|
| 532 |
+
|
| 533 |
+
hidden_states = torch.cat(sliced, dim=2)
|
| 534 |
+
# logger.info(f"us hidden_states {hidden_states.shape}")
|
| 535 |
+
del sliced
|
| 536 |
+
|
| 537 |
+
hidden_states = hidden_states.to(org_device)
|
| 538 |
+
return hidden_states
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
class SlicingAutoencoderKL(ModelMixin, ConfigMixin):
|
| 542 |
+
r"""Variational Autoencoder (VAE) model with KL loss from the paper Auto-Encoding Variational Bayes by Diederik P. Kingma
|
| 543 |
+
and Max Welling.
|
| 544 |
+
|
| 545 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
|
| 546 |
+
implements for all the model (such as downloading or saving, etc.)
|
| 547 |
+
|
| 548 |
+
Parameters:
|
| 549 |
+
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
|
| 550 |
+
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
|
| 551 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to :
|
| 552 |
+
obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types.
|
| 553 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to :
|
| 554 |
+
obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types.
|
| 555 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to :
|
| 556 |
+
obj:`(64,)`): Tuple of block output channels.
|
| 557 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
| 558 |
+
latent_channels (`int`, *optional*, defaults to `4`): Number of channels in the latent space.
|
| 559 |
+
sample_size (`int`, *optional*, defaults to `32`): TODO
|
| 560 |
+
"""
|
| 561 |
+
|
| 562 |
+
@register_to_config
|
| 563 |
+
def __init__(
|
| 564 |
+
self,
|
| 565 |
+
in_channels: int = 3,
|
| 566 |
+
out_channels: int = 3,
|
| 567 |
+
down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
|
| 568 |
+
up_block_types: Tuple[str] = ("UpDecoderBlock2D",),
|
| 569 |
+
block_out_channels: Tuple[int] = (64,),
|
| 570 |
+
layers_per_block: int = 1,
|
| 571 |
+
act_fn: str = "silu",
|
| 572 |
+
latent_channels: int = 4,
|
| 573 |
+
norm_num_groups: int = 32,
|
| 574 |
+
sample_size: int = 32,
|
| 575 |
+
num_slices: int = 16,
|
| 576 |
+
):
|
| 577 |
+
super().__init__()
|
| 578 |
+
|
| 579 |
+
# pass init params to Encoder
|
| 580 |
+
self.encoder = SlicingEncoder(
|
| 581 |
+
in_channels=in_channels,
|
| 582 |
+
out_channels=latent_channels,
|
| 583 |
+
down_block_types=down_block_types,
|
| 584 |
+
block_out_channels=block_out_channels,
|
| 585 |
+
layers_per_block=layers_per_block,
|
| 586 |
+
act_fn=act_fn,
|
| 587 |
+
norm_num_groups=norm_num_groups,
|
| 588 |
+
double_z=True,
|
| 589 |
+
num_slices=num_slices,
|
| 590 |
+
)
|
| 591 |
+
|
| 592 |
+
# pass init params to Decoder
|
| 593 |
+
self.decoder = SlicingDecoder(
|
| 594 |
+
in_channels=latent_channels,
|
| 595 |
+
out_channels=out_channels,
|
| 596 |
+
up_block_types=up_block_types,
|
| 597 |
+
block_out_channels=block_out_channels,
|
| 598 |
+
layers_per_block=layers_per_block,
|
| 599 |
+
norm_num_groups=norm_num_groups,
|
| 600 |
+
act_fn=act_fn,
|
| 601 |
+
num_slices=num_slices,
|
| 602 |
+
)
|
| 603 |
+
|
| 604 |
+
self.quant_conv = torch.nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
|
| 605 |
+
self.post_quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1)
|
| 606 |
+
self.use_slicing = False
|
| 607 |
+
|
| 608 |
+
def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput:
|
| 609 |
+
h = self.encoder(x)
|
| 610 |
+
moments = self.quant_conv(h)
|
| 611 |
+
posterior = DiagonalGaussianDistribution(moments)
|
| 612 |
+
|
| 613 |
+
if not return_dict:
|
| 614 |
+
return (posterior,)
|
| 615 |
+
|
| 616 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
| 617 |
+
|
| 618 |
+
def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
|
| 619 |
+
z = self.post_quant_conv(z)
|
| 620 |
+
dec = self.decoder(z)
|
| 621 |
+
|
| 622 |
+
if not return_dict:
|
| 623 |
+
return (dec,)
|
| 624 |
+
|
| 625 |
+
return DecoderOutput(sample=dec)
|
| 626 |
+
|
| 627 |
+
# これはバッチ方向のスライシング 紛らわしい
|
| 628 |
+
def enable_slicing(self):
|
| 629 |
+
r"""
|
| 630 |
+
Enable sliced VAE decoding.
|
| 631 |
+
|
| 632 |
+
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
| 633 |
+
steps. This is useful to save some memory and allow larger batch sizes.
|
| 634 |
+
"""
|
| 635 |
+
self.use_slicing = True
|
| 636 |
+
|
| 637 |
+
def disable_slicing(self):
|
| 638 |
+
r"""
|
| 639 |
+
Disable sliced VAE decoding. If `enable_slicing` was previously invoked, this method will go back to computing
|
| 640 |
+
decoding in one step.
|
| 641 |
+
"""
|
| 642 |
+
self.use_slicing = False
|
| 643 |
+
|
| 644 |
+
def decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
|
| 645 |
+
if self.use_slicing and z.shape[0] > 1:
|
| 646 |
+
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
|
| 647 |
+
decoded = torch.cat(decoded_slices)
|
| 648 |
+
else:
|
| 649 |
+
decoded = self._decode(z).sample
|
| 650 |
+
|
| 651 |
+
if not return_dict:
|
| 652 |
+
return (decoded,)
|
| 653 |
+
|
| 654 |
+
return DecoderOutput(sample=decoded)
|
| 655 |
+
|
| 656 |
+
def forward(
|
| 657 |
+
self,
|
| 658 |
+
sample: torch.FloatTensor,
|
| 659 |
+
sample_posterior: bool = False,
|
| 660 |
+
return_dict: bool = True,
|
| 661 |
+
generator: Optional[torch.Generator] = None,
|
| 662 |
+
) -> Union[DecoderOutput, torch.FloatTensor]:
|
| 663 |
+
r"""
|
| 664 |
+
Args:
|
| 665 |
+
sample (`torch.FloatTensor`): Input sample.
|
| 666 |
+
sample_posterior (`bool`, *optional*, defaults to `False`):
|
| 667 |
+
Whether to sample from the posterior.
|
| 668 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 669 |
+
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
| 670 |
+
"""
|
| 671 |
+
x = sample
|
| 672 |
+
posterior = self.encode(x).latent_dist
|
| 673 |
+
if sample_posterior:
|
| 674 |
+
z = posterior.sample(generator=generator)
|
| 675 |
+
else:
|
| 676 |
+
z = posterior.mode()
|
| 677 |
+
dec = self.decode(z).sample
|
| 678 |
+
|
| 679 |
+
if not return_dict:
|
| 680 |
+
return (dec,)
|
| 681 |
+
|
| 682 |
+
return DecoderOutput(sample=dec)
|