Upload lora-scripts/sd-scripts/XTI_hijack.py with huggingface_hub
Browse files
lora-scripts/sd-scripts/XTI_hijack.py
ADDED
|
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from library.device_utils import init_ipex
|
| 3 |
+
init_ipex()
|
| 4 |
+
|
| 5 |
+
from typing import Union, List, Optional, Dict, Any, Tuple
|
| 6 |
+
from diffusers.models.unet_2d_condition import UNet2DConditionOutput
|
| 7 |
+
|
| 8 |
+
from library.original_unet import SampleOutput
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def unet_forward_XTI(
|
| 12 |
+
self,
|
| 13 |
+
sample: torch.FloatTensor,
|
| 14 |
+
timestep: Union[torch.Tensor, float, int],
|
| 15 |
+
encoder_hidden_states: torch.Tensor,
|
| 16 |
+
class_labels: Optional[torch.Tensor] = None,
|
| 17 |
+
return_dict: bool = True,
|
| 18 |
+
) -> Union[Dict, Tuple]:
|
| 19 |
+
r"""
|
| 20 |
+
Args:
|
| 21 |
+
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
|
| 22 |
+
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
|
| 23 |
+
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
|
| 24 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 25 |
+
Whether or not to return a dict instead of a plain tuple.
|
| 26 |
+
|
| 27 |
+
Returns:
|
| 28 |
+
`SampleOutput` or `tuple`:
|
| 29 |
+
`SampleOutput` if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
|
| 30 |
+
"""
|
| 31 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
| 32 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
|
| 33 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
| 34 |
+
# on the fly if necessary.
|
| 35 |
+
# デフォルトではサンプルは「2^アップサンプルの数」、つまり64の倍数である必要がある
|
| 36 |
+
# ただそれ以外のサイズにも対応できるように、必要ならアップサンプルのサイズを変更する
|
| 37 |
+
# 多分画質が悪くなるので、64で割り切れるようにしておくのが良い
|
| 38 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
| 39 |
+
|
| 40 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
| 41 |
+
# 64で割り切れないときはupsamplerにサイズを伝える
|
| 42 |
+
forward_upsample_size = False
|
| 43 |
+
upsample_size = None
|
| 44 |
+
|
| 45 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
| 46 |
+
# logger.info("Forward upsample size to force interpolation output size.")
|
| 47 |
+
forward_upsample_size = True
|
| 48 |
+
|
| 49 |
+
# 1. time
|
| 50 |
+
timesteps = timestep
|
| 51 |
+
timesteps = self.handle_unusual_timesteps(sample, timesteps) # 変な時だけ処理
|
| 52 |
+
|
| 53 |
+
t_emb = self.time_proj(timesteps)
|
| 54 |
+
|
| 55 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
| 56 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
| 57 |
+
# there might be better ways to encapsulate this.
|
| 58 |
+
# timestepsは重みを含まないので常にfloat32のテンソルを返す
|
| 59 |
+
# しかしtime_embeddingはfp16で動いているかもしれないので、ここでキャストする必要がある
|
| 60 |
+
# time_projでキャストしておけばいいんじゃね?
|
| 61 |
+
t_emb = t_emb.to(dtype=self.dtype)
|
| 62 |
+
emb = self.time_embedding(t_emb)
|
| 63 |
+
|
| 64 |
+
# 2. pre-process
|
| 65 |
+
sample = self.conv_in(sample)
|
| 66 |
+
|
| 67 |
+
# 3. down
|
| 68 |
+
down_block_res_samples = (sample,)
|
| 69 |
+
down_i = 0
|
| 70 |
+
for downsample_block in self.down_blocks:
|
| 71 |
+
# downblockはforwardで必ずencoder_hidden_statesを受け取るようにしても良さそうだけど、
|
| 72 |
+
# まあこちらのほうがわかりやすいかもしれない
|
| 73 |
+
if downsample_block.has_cross_attention:
|
| 74 |
+
sample, res_samples = downsample_block(
|
| 75 |
+
hidden_states=sample,
|
| 76 |
+
temb=emb,
|
| 77 |
+
encoder_hidden_states=encoder_hidden_states[down_i : down_i + 2],
|
| 78 |
+
)
|
| 79 |
+
down_i += 2
|
| 80 |
+
else:
|
| 81 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
| 82 |
+
|
| 83 |
+
down_block_res_samples += res_samples
|
| 84 |
+
|
| 85 |
+
# 4. mid
|
| 86 |
+
sample = self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states[6])
|
| 87 |
+
|
| 88 |
+
# 5. up
|
| 89 |
+
up_i = 7
|
| 90 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
| 91 |
+
is_final_block = i == len(self.up_blocks) - 1
|
| 92 |
+
|
| 93 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
| 94 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] # skip connection
|
| 95 |
+
|
| 96 |
+
# if we have not reached the final block and need to forward the upsample size, we do it here
|
| 97 |
+
# 前述のように最後のブロック以外ではupsample_sizeを伝える
|
| 98 |
+
if not is_final_block and forward_upsample_size:
|
| 99 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
| 100 |
+
|
| 101 |
+
if upsample_block.has_cross_attention:
|
| 102 |
+
sample = upsample_block(
|
| 103 |
+
hidden_states=sample,
|
| 104 |
+
temb=emb,
|
| 105 |
+
res_hidden_states_tuple=res_samples,
|
| 106 |
+
encoder_hidden_states=encoder_hidden_states[up_i : up_i + 3],
|
| 107 |
+
upsample_size=upsample_size,
|
| 108 |
+
)
|
| 109 |
+
up_i += 3
|
| 110 |
+
else:
|
| 111 |
+
sample = upsample_block(
|
| 112 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
# 6. post-process
|
| 116 |
+
sample = self.conv_norm_out(sample)
|
| 117 |
+
sample = self.conv_act(sample)
|
| 118 |
+
sample = self.conv_out(sample)
|
| 119 |
+
|
| 120 |
+
if not return_dict:
|
| 121 |
+
return (sample,)
|
| 122 |
+
|
| 123 |
+
return SampleOutput(sample=sample)
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def downblock_forward_XTI(
|
| 127 |
+
self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, cross_attention_kwargs=None
|
| 128 |
+
):
|
| 129 |
+
output_states = ()
|
| 130 |
+
i = 0
|
| 131 |
+
|
| 132 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
| 133 |
+
if self.training and self.gradient_checkpointing:
|
| 134 |
+
|
| 135 |
+
def create_custom_forward(module, return_dict=None):
|
| 136 |
+
def custom_forward(*inputs):
|
| 137 |
+
if return_dict is not None:
|
| 138 |
+
return module(*inputs, return_dict=return_dict)
|
| 139 |
+
else:
|
| 140 |
+
return module(*inputs)
|
| 141 |
+
|
| 142 |
+
return custom_forward
|
| 143 |
+
|
| 144 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
| 145 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 146 |
+
create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states[i]
|
| 147 |
+
)[0]
|
| 148 |
+
else:
|
| 149 |
+
hidden_states = resnet(hidden_states, temb)
|
| 150 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states[i]).sample
|
| 151 |
+
|
| 152 |
+
output_states += (hidden_states,)
|
| 153 |
+
i += 1
|
| 154 |
+
|
| 155 |
+
if self.downsamplers is not None:
|
| 156 |
+
for downsampler in self.downsamplers:
|
| 157 |
+
hidden_states = downsampler(hidden_states)
|
| 158 |
+
|
| 159 |
+
output_states += (hidden_states,)
|
| 160 |
+
|
| 161 |
+
return hidden_states, output_states
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
def upblock_forward_XTI(
|
| 165 |
+
self,
|
| 166 |
+
hidden_states,
|
| 167 |
+
res_hidden_states_tuple,
|
| 168 |
+
temb=None,
|
| 169 |
+
encoder_hidden_states=None,
|
| 170 |
+
upsample_size=None,
|
| 171 |
+
):
|
| 172 |
+
i = 0
|
| 173 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
| 174 |
+
# pop res hidden states
|
| 175 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
| 176 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 177 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
| 178 |
+
|
| 179 |
+
if self.training and self.gradient_checkpointing:
|
| 180 |
+
|
| 181 |
+
def create_custom_forward(module, return_dict=None):
|
| 182 |
+
def custom_forward(*inputs):
|
| 183 |
+
if return_dict is not None:
|
| 184 |
+
return module(*inputs, return_dict=return_dict)
|
| 185 |
+
else:
|
| 186 |
+
return module(*inputs)
|
| 187 |
+
|
| 188 |
+
return custom_forward
|
| 189 |
+
|
| 190 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
| 191 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 192 |
+
create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states[i]
|
| 193 |
+
)[0]
|
| 194 |
+
else:
|
| 195 |
+
hidden_states = resnet(hidden_states, temb)
|
| 196 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states[i]).sample
|
| 197 |
+
|
| 198 |
+
i += 1
|
| 199 |
+
|
| 200 |
+
if self.upsamplers is not None:
|
| 201 |
+
for upsampler in self.upsamplers:
|
| 202 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
| 203 |
+
|
| 204 |
+
return hidden_states
|