Upload lora-scripts/sd-scripts/library/lpw_stable_diffusion.py with huggingface_hub
Browse files
lora-scripts/sd-scripts/library/lpw_stable_diffusion.py
ADDED
|
@@ -0,0 +1,1233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# copy from https://github.com/huggingface/diffusers/blob/main/examples/community/lpw_stable_diffusion.py
|
| 2 |
+
# and modify to support SD2.x
|
| 3 |
+
|
| 4 |
+
import inspect
|
| 5 |
+
import re
|
| 6 |
+
from typing import Callable, List, Optional, Union
|
| 7 |
+
|
| 8 |
+
import numpy as np
|
| 9 |
+
import PIL.Image
|
| 10 |
+
import torch
|
| 11 |
+
from packaging import version
|
| 12 |
+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
| 13 |
+
|
| 14 |
+
import diffusers
|
| 15 |
+
from diffusers import SchedulerMixin, StableDiffusionPipeline
|
| 16 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 17 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
|
| 18 |
+
from diffusers.utils import logging
|
| 19 |
+
|
| 20 |
+
try:
|
| 21 |
+
from diffusers.utils import PIL_INTERPOLATION
|
| 22 |
+
except ImportError:
|
| 23 |
+
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
|
| 24 |
+
PIL_INTERPOLATION = {
|
| 25 |
+
"linear": PIL.Image.Resampling.BILINEAR,
|
| 26 |
+
"bilinear": PIL.Image.Resampling.BILINEAR,
|
| 27 |
+
"bicubic": PIL.Image.Resampling.BICUBIC,
|
| 28 |
+
"lanczos": PIL.Image.Resampling.LANCZOS,
|
| 29 |
+
"nearest": PIL.Image.Resampling.NEAREST,
|
| 30 |
+
}
|
| 31 |
+
else:
|
| 32 |
+
PIL_INTERPOLATION = {
|
| 33 |
+
"linear": PIL.Image.LINEAR,
|
| 34 |
+
"bilinear": PIL.Image.BILINEAR,
|
| 35 |
+
"bicubic": PIL.Image.BICUBIC,
|
| 36 |
+
"lanczos": PIL.Image.LANCZOS,
|
| 37 |
+
"nearest": PIL.Image.NEAREST,
|
| 38 |
+
}
|
| 39 |
+
# ------------------------------------------------------------------------------
|
| 40 |
+
|
| 41 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 42 |
+
|
| 43 |
+
re_attention = re.compile(
|
| 44 |
+
r"""
|
| 45 |
+
\\\(|
|
| 46 |
+
\\\)|
|
| 47 |
+
\\\[|
|
| 48 |
+
\\]|
|
| 49 |
+
\\\\|
|
| 50 |
+
\\|
|
| 51 |
+
\(|
|
| 52 |
+
\[|
|
| 53 |
+
:([+-]?[.\d]+)\)|
|
| 54 |
+
\)|
|
| 55 |
+
]|
|
| 56 |
+
[^\\()\[\]:]+|
|
| 57 |
+
:
|
| 58 |
+
""",
|
| 59 |
+
re.X,
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def parse_prompt_attention(text):
|
| 64 |
+
"""
|
| 65 |
+
Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
|
| 66 |
+
Accepted tokens are:
|
| 67 |
+
(abc) - increases attention to abc by a multiplier of 1.1
|
| 68 |
+
(abc:3.12) - increases attention to abc by a multiplier of 3.12
|
| 69 |
+
[abc] - decreases attention to abc by a multiplier of 1.1
|
| 70 |
+
\( - literal character '('
|
| 71 |
+
\[ - literal character '['
|
| 72 |
+
\) - literal character ')'
|
| 73 |
+
\] - literal character ']'
|
| 74 |
+
\\ - literal character '\'
|
| 75 |
+
anything else - just text
|
| 76 |
+
>>> parse_prompt_attention('normal text')
|
| 77 |
+
[['normal text', 1.0]]
|
| 78 |
+
>>> parse_prompt_attention('an (important) word')
|
| 79 |
+
[['an ', 1.0], ['important', 1.1], [' word', 1.0]]
|
| 80 |
+
>>> parse_prompt_attention('(unbalanced')
|
| 81 |
+
[['unbalanced', 1.1]]
|
| 82 |
+
>>> parse_prompt_attention('\(literal\]')
|
| 83 |
+
[['(literal]', 1.0]]
|
| 84 |
+
>>> parse_prompt_attention('(unnecessary)(parens)')
|
| 85 |
+
[['unnecessaryparens', 1.1]]
|
| 86 |
+
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
|
| 87 |
+
[['a ', 1.0],
|
| 88 |
+
['house', 1.5730000000000004],
|
| 89 |
+
[' ', 1.1],
|
| 90 |
+
['on', 1.0],
|
| 91 |
+
[' a ', 1.1],
|
| 92 |
+
['hill', 0.55],
|
| 93 |
+
[', sun, ', 1.1],
|
| 94 |
+
['sky', 1.4641000000000006],
|
| 95 |
+
['.', 1.1]]
|
| 96 |
+
"""
|
| 97 |
+
|
| 98 |
+
res = []
|
| 99 |
+
round_brackets = []
|
| 100 |
+
square_brackets = []
|
| 101 |
+
|
| 102 |
+
round_bracket_multiplier = 1.1
|
| 103 |
+
square_bracket_multiplier = 1 / 1.1
|
| 104 |
+
|
| 105 |
+
def multiply_range(start_position, multiplier):
|
| 106 |
+
for p in range(start_position, len(res)):
|
| 107 |
+
res[p][1] *= multiplier
|
| 108 |
+
|
| 109 |
+
for m in re_attention.finditer(text):
|
| 110 |
+
text = m.group(0)
|
| 111 |
+
weight = m.group(1)
|
| 112 |
+
|
| 113 |
+
if text.startswith("\\"):
|
| 114 |
+
res.append([text[1:], 1.0])
|
| 115 |
+
elif text == "(":
|
| 116 |
+
round_brackets.append(len(res))
|
| 117 |
+
elif text == "[":
|
| 118 |
+
square_brackets.append(len(res))
|
| 119 |
+
elif weight is not None and len(round_brackets) > 0:
|
| 120 |
+
multiply_range(round_brackets.pop(), float(weight))
|
| 121 |
+
elif text == ")" and len(round_brackets) > 0:
|
| 122 |
+
multiply_range(round_brackets.pop(), round_bracket_multiplier)
|
| 123 |
+
elif text == "]" and len(square_brackets) > 0:
|
| 124 |
+
multiply_range(square_brackets.pop(), square_bracket_multiplier)
|
| 125 |
+
else:
|
| 126 |
+
res.append([text, 1.0])
|
| 127 |
+
|
| 128 |
+
for pos in round_brackets:
|
| 129 |
+
multiply_range(pos, round_bracket_multiplier)
|
| 130 |
+
|
| 131 |
+
for pos in square_brackets:
|
| 132 |
+
multiply_range(pos, square_bracket_multiplier)
|
| 133 |
+
|
| 134 |
+
if len(res) == 0:
|
| 135 |
+
res = [["", 1.0]]
|
| 136 |
+
|
| 137 |
+
# merge runs of identical weights
|
| 138 |
+
i = 0
|
| 139 |
+
while i + 1 < len(res):
|
| 140 |
+
if res[i][1] == res[i + 1][1]:
|
| 141 |
+
res[i][0] += res[i + 1][0]
|
| 142 |
+
res.pop(i + 1)
|
| 143 |
+
else:
|
| 144 |
+
i += 1
|
| 145 |
+
|
| 146 |
+
return res
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def get_prompts_with_weights(pipe: StableDiffusionPipeline, prompt: List[str], max_length: int):
|
| 150 |
+
r"""
|
| 151 |
+
Tokenize a list of prompts and return its tokens with weights of each token.
|
| 152 |
+
|
| 153 |
+
No padding, starting or ending token is included.
|
| 154 |
+
"""
|
| 155 |
+
tokens = []
|
| 156 |
+
weights = []
|
| 157 |
+
truncated = False
|
| 158 |
+
for text in prompt:
|
| 159 |
+
texts_and_weights = parse_prompt_attention(text)
|
| 160 |
+
text_token = []
|
| 161 |
+
text_weight = []
|
| 162 |
+
for word, weight in texts_and_weights:
|
| 163 |
+
# tokenize and discard the starting and the ending token
|
| 164 |
+
token = pipe.tokenizer(word).input_ids[1:-1]
|
| 165 |
+
text_token += token
|
| 166 |
+
# copy the weight by length of token
|
| 167 |
+
text_weight += [weight] * len(token)
|
| 168 |
+
# stop if the text is too long (longer than truncation limit)
|
| 169 |
+
if len(text_token) > max_length:
|
| 170 |
+
truncated = True
|
| 171 |
+
break
|
| 172 |
+
# truncate
|
| 173 |
+
if len(text_token) > max_length:
|
| 174 |
+
truncated = True
|
| 175 |
+
text_token = text_token[:max_length]
|
| 176 |
+
text_weight = text_weight[:max_length]
|
| 177 |
+
tokens.append(text_token)
|
| 178 |
+
weights.append(text_weight)
|
| 179 |
+
if truncated:
|
| 180 |
+
logger.warning("Prompt was truncated. Try to shorten the prompt or increase max_embeddings_multiples")
|
| 181 |
+
return tokens, weights
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
def pad_tokens_and_weights(tokens, weights, max_length, bos, eos, no_boseos_middle=True, chunk_length=77):
|
| 185 |
+
r"""
|
| 186 |
+
Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length.
|
| 187 |
+
"""
|
| 188 |
+
max_embeddings_multiples = (max_length - 2) // (chunk_length - 2)
|
| 189 |
+
weights_length = max_length if no_boseos_middle else max_embeddings_multiples * chunk_length
|
| 190 |
+
for i in range(len(tokens)):
|
| 191 |
+
tokens[i] = [bos] + tokens[i] + [eos] * (max_length - 1 - len(tokens[i]))
|
| 192 |
+
if no_boseos_middle:
|
| 193 |
+
weights[i] = [1.0] + weights[i] + [1.0] * (max_length - 1 - len(weights[i]))
|
| 194 |
+
else:
|
| 195 |
+
w = []
|
| 196 |
+
if len(weights[i]) == 0:
|
| 197 |
+
w = [1.0] * weights_length
|
| 198 |
+
else:
|
| 199 |
+
for j in range(max_embeddings_multiples):
|
| 200 |
+
w.append(1.0) # weight for starting token in this chunk
|
| 201 |
+
w += weights[i][j * (chunk_length - 2) : min(len(weights[i]), (j + 1) * (chunk_length - 2))]
|
| 202 |
+
w.append(1.0) # weight for ending token in this chunk
|
| 203 |
+
w += [1.0] * (weights_length - len(w))
|
| 204 |
+
weights[i] = w[:]
|
| 205 |
+
|
| 206 |
+
return tokens, weights
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
def get_unweighted_text_embeddings(
|
| 210 |
+
pipe: StableDiffusionPipeline,
|
| 211 |
+
text_input: torch.Tensor,
|
| 212 |
+
chunk_length: int,
|
| 213 |
+
clip_skip: int,
|
| 214 |
+
eos: int,
|
| 215 |
+
pad: int,
|
| 216 |
+
no_boseos_middle: Optional[bool] = True,
|
| 217 |
+
):
|
| 218 |
+
"""
|
| 219 |
+
When the length of tokens is a multiple of the capacity of the text encoder,
|
| 220 |
+
it should be split into chunks and sent to the text encoder individually.
|
| 221 |
+
"""
|
| 222 |
+
max_embeddings_multiples = (text_input.shape[1] - 2) // (chunk_length - 2)
|
| 223 |
+
if max_embeddings_multiples > 1:
|
| 224 |
+
text_embeddings = []
|
| 225 |
+
for i in range(max_embeddings_multiples):
|
| 226 |
+
# extract the i-th chunk
|
| 227 |
+
text_input_chunk = text_input[:, i * (chunk_length - 2) : (i + 1) * (chunk_length - 2) + 2].clone()
|
| 228 |
+
|
| 229 |
+
# cover the head and the tail by the starting and the ending tokens
|
| 230 |
+
text_input_chunk[:, 0] = text_input[0, 0]
|
| 231 |
+
if pad == eos: # v1
|
| 232 |
+
text_input_chunk[:, -1] = text_input[0, -1]
|
| 233 |
+
else: # v2
|
| 234 |
+
for j in range(len(text_input_chunk)):
|
| 235 |
+
if text_input_chunk[j, -1] != eos and text_input_chunk[j, -1] != pad: # 最後に普通の文字がある
|
| 236 |
+
text_input_chunk[j, -1] = eos
|
| 237 |
+
if text_input_chunk[j, 1] == pad: # BOSだけであとはPAD
|
| 238 |
+
text_input_chunk[j, 1] = eos
|
| 239 |
+
|
| 240 |
+
if clip_skip is None or clip_skip == 1:
|
| 241 |
+
text_embedding = pipe.text_encoder(text_input_chunk)[0]
|
| 242 |
+
else:
|
| 243 |
+
enc_out = pipe.text_encoder(text_input_chunk, output_hidden_states=True, return_dict=True)
|
| 244 |
+
text_embedding = enc_out["hidden_states"][-clip_skip]
|
| 245 |
+
text_embedding = pipe.text_encoder.text_model.final_layer_norm(text_embedding)
|
| 246 |
+
|
| 247 |
+
if no_boseos_middle:
|
| 248 |
+
if i == 0:
|
| 249 |
+
# discard the ending token
|
| 250 |
+
text_embedding = text_embedding[:, :-1]
|
| 251 |
+
elif i == max_embeddings_multiples - 1:
|
| 252 |
+
# discard the starting token
|
| 253 |
+
text_embedding = text_embedding[:, 1:]
|
| 254 |
+
else:
|
| 255 |
+
# discard both starting and ending tokens
|
| 256 |
+
text_embedding = text_embedding[:, 1:-1]
|
| 257 |
+
|
| 258 |
+
text_embeddings.append(text_embedding)
|
| 259 |
+
text_embeddings = torch.concat(text_embeddings, axis=1)
|
| 260 |
+
else:
|
| 261 |
+
if clip_skip is None or clip_skip == 1:
|
| 262 |
+
text_embeddings = pipe.text_encoder(text_input)[0]
|
| 263 |
+
else:
|
| 264 |
+
enc_out = pipe.text_encoder(text_input, output_hidden_states=True, return_dict=True)
|
| 265 |
+
text_embeddings = enc_out["hidden_states"][-clip_skip]
|
| 266 |
+
text_embeddings = pipe.text_encoder.text_model.final_layer_norm(text_embeddings)
|
| 267 |
+
return text_embeddings
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
def get_weighted_text_embeddings(
|
| 271 |
+
pipe: StableDiffusionPipeline,
|
| 272 |
+
prompt: Union[str, List[str]],
|
| 273 |
+
uncond_prompt: Optional[Union[str, List[str]]] = None,
|
| 274 |
+
max_embeddings_multiples: Optional[int] = 3,
|
| 275 |
+
no_boseos_middle: Optional[bool] = False,
|
| 276 |
+
skip_parsing: Optional[bool] = False,
|
| 277 |
+
skip_weighting: Optional[bool] = False,
|
| 278 |
+
clip_skip=None,
|
| 279 |
+
):
|
| 280 |
+
r"""
|
| 281 |
+
Prompts can be assigned with local weights using brackets. For example,
|
| 282 |
+
prompt 'A (very beautiful) masterpiece' highlights the words 'very beautiful',
|
| 283 |
+
and the embedding tokens corresponding to the words get multiplied by a constant, 1.1.
|
| 284 |
+
|
| 285 |
+
Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean.
|
| 286 |
+
|
| 287 |
+
Args:
|
| 288 |
+
pipe (`StableDiffusionPipeline`):
|
| 289 |
+
Pipe to provide access to the tokenizer and the text encoder.
|
| 290 |
+
prompt (`str` or `List[str]`):
|
| 291 |
+
The prompt or prompts to guide the image generation.
|
| 292 |
+
uncond_prompt (`str` or `List[str]`):
|
| 293 |
+
The unconditional prompt or prompts for guide the image generation. If unconditional prompt
|
| 294 |
+
is provided, the embeddings of prompt and uncond_prompt are concatenated.
|
| 295 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
| 296 |
+
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
| 297 |
+
no_boseos_middle (`bool`, *optional*, defaults to `False`):
|
| 298 |
+
If the length of text token is multiples of the capacity of text encoder, whether reserve the starting and
|
| 299 |
+
ending token in each of the chunk in the middle.
|
| 300 |
+
skip_parsing (`bool`, *optional*, defaults to `False`):
|
| 301 |
+
Skip the parsing of brackets.
|
| 302 |
+
skip_weighting (`bool`, *optional*, defaults to `False`):
|
| 303 |
+
Skip the weighting. When the parsing is skipped, it is forced True.
|
| 304 |
+
"""
|
| 305 |
+
max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2
|
| 306 |
+
if isinstance(prompt, str):
|
| 307 |
+
prompt = [prompt]
|
| 308 |
+
|
| 309 |
+
if not skip_parsing:
|
| 310 |
+
prompt_tokens, prompt_weights = get_prompts_with_weights(pipe, prompt, max_length - 2)
|
| 311 |
+
if uncond_prompt is not None:
|
| 312 |
+
if isinstance(uncond_prompt, str):
|
| 313 |
+
uncond_prompt = [uncond_prompt]
|
| 314 |
+
uncond_tokens, uncond_weights = get_prompts_with_weights(pipe, uncond_prompt, max_length - 2)
|
| 315 |
+
else:
|
| 316 |
+
prompt_tokens = [token[1:-1] for token in pipe.tokenizer(prompt, max_length=max_length, truncation=True).input_ids]
|
| 317 |
+
prompt_weights = [[1.0] * len(token) for token in prompt_tokens]
|
| 318 |
+
if uncond_prompt is not None:
|
| 319 |
+
if isinstance(uncond_prompt, str):
|
| 320 |
+
uncond_prompt = [uncond_prompt]
|
| 321 |
+
uncond_tokens = [
|
| 322 |
+
token[1:-1] for token in pipe.tokenizer(uncond_prompt, max_length=max_length, truncation=True).input_ids
|
| 323 |
+
]
|
| 324 |
+
uncond_weights = [[1.0] * len(token) for token in uncond_tokens]
|
| 325 |
+
|
| 326 |
+
# round up the longest length of tokens to a multiple of (model_max_length - 2)
|
| 327 |
+
max_length = max([len(token) for token in prompt_tokens])
|
| 328 |
+
if uncond_prompt is not None:
|
| 329 |
+
max_length = max(max_length, max([len(token) for token in uncond_tokens]))
|
| 330 |
+
|
| 331 |
+
max_embeddings_multiples = min(
|
| 332 |
+
max_embeddings_multiples,
|
| 333 |
+
(max_length - 1) // (pipe.tokenizer.model_max_length - 2) + 1,
|
| 334 |
+
)
|
| 335 |
+
max_embeddings_multiples = max(1, max_embeddings_multiples)
|
| 336 |
+
max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2
|
| 337 |
+
|
| 338 |
+
# pad the length of tokens and weights
|
| 339 |
+
bos = pipe.tokenizer.bos_token_id
|
| 340 |
+
eos = pipe.tokenizer.eos_token_id
|
| 341 |
+
pad = pipe.tokenizer.pad_token_id
|
| 342 |
+
prompt_tokens, prompt_weights = pad_tokens_and_weights(
|
| 343 |
+
prompt_tokens,
|
| 344 |
+
prompt_weights,
|
| 345 |
+
max_length,
|
| 346 |
+
bos,
|
| 347 |
+
eos,
|
| 348 |
+
no_boseos_middle=no_boseos_middle,
|
| 349 |
+
chunk_length=pipe.tokenizer.model_max_length,
|
| 350 |
+
)
|
| 351 |
+
prompt_tokens = torch.tensor(prompt_tokens, dtype=torch.long, device=pipe.device)
|
| 352 |
+
if uncond_prompt is not None:
|
| 353 |
+
uncond_tokens, uncond_weights = pad_tokens_and_weights(
|
| 354 |
+
uncond_tokens,
|
| 355 |
+
uncond_weights,
|
| 356 |
+
max_length,
|
| 357 |
+
bos,
|
| 358 |
+
eos,
|
| 359 |
+
no_boseos_middle=no_boseos_middle,
|
| 360 |
+
chunk_length=pipe.tokenizer.model_max_length,
|
| 361 |
+
)
|
| 362 |
+
uncond_tokens = torch.tensor(uncond_tokens, dtype=torch.long, device=pipe.device)
|
| 363 |
+
|
| 364 |
+
# get the embeddings
|
| 365 |
+
text_embeddings = get_unweighted_text_embeddings(
|
| 366 |
+
pipe,
|
| 367 |
+
prompt_tokens,
|
| 368 |
+
pipe.tokenizer.model_max_length,
|
| 369 |
+
clip_skip,
|
| 370 |
+
eos,
|
| 371 |
+
pad,
|
| 372 |
+
no_boseos_middle=no_boseos_middle,
|
| 373 |
+
)
|
| 374 |
+
prompt_weights = torch.tensor(prompt_weights, dtype=text_embeddings.dtype, device=pipe.device)
|
| 375 |
+
if uncond_prompt is not None:
|
| 376 |
+
uncond_embeddings = get_unweighted_text_embeddings(
|
| 377 |
+
pipe,
|
| 378 |
+
uncond_tokens,
|
| 379 |
+
pipe.tokenizer.model_max_length,
|
| 380 |
+
clip_skip,
|
| 381 |
+
eos,
|
| 382 |
+
pad,
|
| 383 |
+
no_boseos_middle=no_boseos_middle,
|
| 384 |
+
)
|
| 385 |
+
uncond_weights = torch.tensor(uncond_weights, dtype=uncond_embeddings.dtype, device=pipe.device)
|
| 386 |
+
|
| 387 |
+
# assign weights to the prompts and normalize in the sense of mean
|
| 388 |
+
# TODO: should we normalize by chunk or in a whole (current implementation)?
|
| 389 |
+
if (not skip_parsing) and (not skip_weighting):
|
| 390 |
+
previous_mean = text_embeddings.float().mean(axis=[-2, -1]).to(text_embeddings.dtype)
|
| 391 |
+
text_embeddings *= prompt_weights.unsqueeze(-1)
|
| 392 |
+
current_mean = text_embeddings.float().mean(axis=[-2, -1]).to(text_embeddings.dtype)
|
| 393 |
+
text_embeddings *= (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1)
|
| 394 |
+
if uncond_prompt is not None:
|
| 395 |
+
previous_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to(uncond_embeddings.dtype)
|
| 396 |
+
uncond_embeddings *= uncond_weights.unsqueeze(-1)
|
| 397 |
+
current_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to(uncond_embeddings.dtype)
|
| 398 |
+
uncond_embeddings *= (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1)
|
| 399 |
+
|
| 400 |
+
if uncond_prompt is not None:
|
| 401 |
+
return text_embeddings, uncond_embeddings
|
| 402 |
+
return text_embeddings, None
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
def preprocess_image(image):
|
| 406 |
+
w, h = image.size
|
| 407 |
+
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
| 408 |
+
image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
|
| 409 |
+
image = np.array(image).astype(np.float32) / 255.0
|
| 410 |
+
image = image[None].transpose(0, 3, 1, 2)
|
| 411 |
+
image = torch.from_numpy(image)
|
| 412 |
+
return 2.0 * image - 1.0
|
| 413 |
+
|
| 414 |
+
|
| 415 |
+
def preprocess_mask(mask, scale_factor=8):
|
| 416 |
+
mask = mask.convert("L")
|
| 417 |
+
w, h = mask.size
|
| 418 |
+
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
| 419 |
+
mask = mask.resize((w // scale_factor, h // scale_factor), resample=PIL_INTERPOLATION["nearest"])
|
| 420 |
+
mask = np.array(mask).astype(np.float32) / 255.0
|
| 421 |
+
mask = np.tile(mask, (4, 1, 1))
|
| 422 |
+
mask = mask[None].transpose(0, 1, 2, 3) # what does this step do?
|
| 423 |
+
mask = 1 - mask # repaint white, keep black
|
| 424 |
+
mask = torch.from_numpy(mask)
|
| 425 |
+
return mask
|
| 426 |
+
|
| 427 |
+
|
| 428 |
+
def prepare_controlnet_image(
|
| 429 |
+
image: PIL.Image.Image,
|
| 430 |
+
width: int,
|
| 431 |
+
height: int,
|
| 432 |
+
batch_size: int,
|
| 433 |
+
num_images_per_prompt: int,
|
| 434 |
+
device: torch.device,
|
| 435 |
+
dtype: torch.dtype,
|
| 436 |
+
do_classifier_free_guidance: bool = False,
|
| 437 |
+
guess_mode: bool = False,
|
| 438 |
+
):
|
| 439 |
+
if not isinstance(image, torch.Tensor):
|
| 440 |
+
if isinstance(image, PIL.Image.Image):
|
| 441 |
+
image = [image]
|
| 442 |
+
|
| 443 |
+
if isinstance(image[0], PIL.Image.Image):
|
| 444 |
+
images = []
|
| 445 |
+
|
| 446 |
+
for image_ in image:
|
| 447 |
+
image_ = image_.convert("RGB")
|
| 448 |
+
image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
|
| 449 |
+
image_ = np.array(image_)
|
| 450 |
+
image_ = image_[None, :]
|
| 451 |
+
images.append(image_)
|
| 452 |
+
|
| 453 |
+
image = images
|
| 454 |
+
|
| 455 |
+
image = np.concatenate(image, axis=0)
|
| 456 |
+
image = np.array(image).astype(np.float32) / 255.0
|
| 457 |
+
image = image.transpose(0, 3, 1, 2)
|
| 458 |
+
image = torch.from_numpy(image)
|
| 459 |
+
elif isinstance(image[0], torch.Tensor):
|
| 460 |
+
image = torch.cat(image, dim=0)
|
| 461 |
+
|
| 462 |
+
image_batch_size = image.shape[0]
|
| 463 |
+
|
| 464 |
+
if image_batch_size == 1:
|
| 465 |
+
repeat_by = batch_size
|
| 466 |
+
else:
|
| 467 |
+
# image batch size is the same as prompt batch size
|
| 468 |
+
repeat_by = num_images_per_prompt
|
| 469 |
+
|
| 470 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
| 471 |
+
|
| 472 |
+
image = image.to(device=device, dtype=dtype)
|
| 473 |
+
|
| 474 |
+
if do_classifier_free_guidance and not guess_mode:
|
| 475 |
+
image = torch.cat([image] * 2)
|
| 476 |
+
|
| 477 |
+
return image
|
| 478 |
+
|
| 479 |
+
|
| 480 |
+
class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
|
| 481 |
+
r"""
|
| 482 |
+
Pipeline for text-to-image generation using Stable Diffusion without tokens length limit, and support parsing
|
| 483 |
+
weighting in prompt.
|
| 484 |
+
|
| 485 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
| 486 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
| 487 |
+
|
| 488 |
+
Args:
|
| 489 |
+
vae ([`AutoencoderKL`]):
|
| 490 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
| 491 |
+
text_encoder ([`CLIPTextModel`]):
|
| 492 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
| 493 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
| 494 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
| 495 |
+
tokenizer (`CLIPTokenizer`):
|
| 496 |
+
Tokenizer of class
|
| 497 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
| 498 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
| 499 |
+
scheduler ([`SchedulerMixin`]):
|
| 500 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
| 501 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
| 502 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
| 503 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
| 504 |
+
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
| 505 |
+
feature_extractor ([`CLIPFeatureExtractor`]):
|
| 506 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
| 507 |
+
"""
|
| 508 |
+
|
| 509 |
+
# if version.parse(version.parse(diffusers.__version__).base_version) >= version.parse("0.9.0"):
|
| 510 |
+
|
| 511 |
+
def __init__(
|
| 512 |
+
self,
|
| 513 |
+
vae: AutoencoderKL,
|
| 514 |
+
text_encoder: CLIPTextModel,
|
| 515 |
+
tokenizer: CLIPTokenizer,
|
| 516 |
+
unet: UNet2DConditionModel,
|
| 517 |
+
scheduler: SchedulerMixin,
|
| 518 |
+
# clip_skip: int,
|
| 519 |
+
safety_checker: StableDiffusionSafetyChecker,
|
| 520 |
+
feature_extractor: CLIPFeatureExtractor,
|
| 521 |
+
requires_safety_checker: bool = True,
|
| 522 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
| 523 |
+
clip_skip: int = 1,
|
| 524 |
+
):
|
| 525 |
+
super().__init__(
|
| 526 |
+
vae=vae,
|
| 527 |
+
text_encoder=text_encoder,
|
| 528 |
+
tokenizer=tokenizer,
|
| 529 |
+
unet=unet,
|
| 530 |
+
scheduler=scheduler,
|
| 531 |
+
safety_checker=safety_checker,
|
| 532 |
+
feature_extractor=feature_extractor,
|
| 533 |
+
requires_safety_checker=requires_safety_checker,
|
| 534 |
+
image_encoder=image_encoder,
|
| 535 |
+
)
|
| 536 |
+
self.custom_clip_skip = clip_skip
|
| 537 |
+
self.__init__additional__()
|
| 538 |
+
|
| 539 |
+
def __init__additional__(self):
|
| 540 |
+
if not hasattr(self, "vae_scale_factor"):
|
| 541 |
+
setattr(self, "vae_scale_factor", 2 ** (len(self.vae.config.block_out_channels) - 1))
|
| 542 |
+
|
| 543 |
+
@property
|
| 544 |
+
def _execution_device(self):
|
| 545 |
+
r"""
|
| 546 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
| 547 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
| 548 |
+
hooks.
|
| 549 |
+
"""
|
| 550 |
+
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
| 551 |
+
return self.device
|
| 552 |
+
for module in self.unet.modules():
|
| 553 |
+
if (
|
| 554 |
+
hasattr(module, "_hf_hook")
|
| 555 |
+
and hasattr(module._hf_hook, "execution_device")
|
| 556 |
+
and module._hf_hook.execution_device is not None
|
| 557 |
+
):
|
| 558 |
+
return torch.device(module._hf_hook.execution_device)
|
| 559 |
+
return self.device
|
| 560 |
+
|
| 561 |
+
def _encode_prompt(
|
| 562 |
+
self,
|
| 563 |
+
prompt,
|
| 564 |
+
device,
|
| 565 |
+
num_images_per_prompt,
|
| 566 |
+
do_classifier_free_guidance,
|
| 567 |
+
negative_prompt,
|
| 568 |
+
max_embeddings_multiples,
|
| 569 |
+
):
|
| 570 |
+
r"""
|
| 571 |
+
Encodes the prompt into text encoder hidden states.
|
| 572 |
+
|
| 573 |
+
Args:
|
| 574 |
+
prompt (`str` or `list(int)`):
|
| 575 |
+
prompt to be encoded
|
| 576 |
+
device: (`torch.device`):
|
| 577 |
+
torch device
|
| 578 |
+
num_images_per_prompt (`int`):
|
| 579 |
+
number of images that should be generated per prompt
|
| 580 |
+
do_classifier_free_guidance (`bool`):
|
| 581 |
+
whether to use classifier free guidance or not
|
| 582 |
+
negative_prompt (`str` or `List[str]`):
|
| 583 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
| 584 |
+
if `guidance_scale` is less than `1`).
|
| 585 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
| 586 |
+
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
| 587 |
+
"""
|
| 588 |
+
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
| 589 |
+
|
| 590 |
+
if negative_prompt is None:
|
| 591 |
+
negative_prompt = [""] * batch_size
|
| 592 |
+
elif isinstance(negative_prompt, str):
|
| 593 |
+
negative_prompt = [negative_prompt] * batch_size
|
| 594 |
+
if batch_size != len(negative_prompt):
|
| 595 |
+
raise ValueError(
|
| 596 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 597 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 598 |
+
" the batch size of `prompt`."
|
| 599 |
+
)
|
| 600 |
+
|
| 601 |
+
text_embeddings, uncond_embeddings = get_weighted_text_embeddings(
|
| 602 |
+
pipe=self,
|
| 603 |
+
prompt=prompt,
|
| 604 |
+
uncond_prompt=negative_prompt if do_classifier_free_guidance else None,
|
| 605 |
+
max_embeddings_multiples=max_embeddings_multiples,
|
| 606 |
+
clip_skip=self.custom_clip_skip,
|
| 607 |
+
)
|
| 608 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
| 609 |
+
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
| 610 |
+
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
| 611 |
+
|
| 612 |
+
if do_classifier_free_guidance:
|
| 613 |
+
bs_embed, seq_len, _ = uncond_embeddings.shape
|
| 614 |
+
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
|
| 615 |
+
uncond_embeddings = uncond_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
| 616 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
| 617 |
+
|
| 618 |
+
return text_embeddings
|
| 619 |
+
|
| 620 |
+
def check_inputs(self, prompt, height, width, strength, callback_steps):
|
| 621 |
+
if not isinstance(prompt, str) and not isinstance(prompt, list):
|
| 622 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
| 623 |
+
|
| 624 |
+
if strength < 0 or strength > 1:
|
| 625 |
+
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
| 626 |
+
|
| 627 |
+
if height % 8 != 0 or width % 8 != 0:
|
| 628 |
+
logger.info(f'{height} {width}')
|
| 629 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
| 630 |
+
|
| 631 |
+
if (callback_steps is None) or (
|
| 632 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
| 633 |
+
):
|
| 634 |
+
raise ValueError(
|
| 635 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}."
|
| 636 |
+
)
|
| 637 |
+
|
| 638 |
+
def get_timesteps(self, num_inference_steps, strength, device, is_text2img):
|
| 639 |
+
if is_text2img:
|
| 640 |
+
return self.scheduler.timesteps.to(device), num_inference_steps
|
| 641 |
+
else:
|
| 642 |
+
# get the original timestep using init_timestep
|
| 643 |
+
offset = self.scheduler.config.get("steps_offset", 0)
|
| 644 |
+
init_timestep = int(num_inference_steps * strength) + offset
|
| 645 |
+
init_timestep = min(init_timestep, num_inference_steps)
|
| 646 |
+
|
| 647 |
+
t_start = max(num_inference_steps - init_timestep + offset, 0)
|
| 648 |
+
timesteps = self.scheduler.timesteps[t_start:].to(device)
|
| 649 |
+
return timesteps, num_inference_steps - t_start
|
| 650 |
+
|
| 651 |
+
def run_safety_checker(self, image, device, dtype):
|
| 652 |
+
if self.safety_checker is not None:
|
| 653 |
+
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
|
| 654 |
+
image, has_nsfw_concept = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values.to(dtype))
|
| 655 |
+
else:
|
| 656 |
+
has_nsfw_concept = None
|
| 657 |
+
return image, has_nsfw_concept
|
| 658 |
+
|
| 659 |
+
def decode_latents(self, latents):
|
| 660 |
+
latents = 1 / 0.18215 * latents
|
| 661 |
+
image = self.vae.decode(latents).sample
|
| 662 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
| 663 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
| 664 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
| 665 |
+
return image
|
| 666 |
+
|
| 667 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
| 668 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
| 669 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
| 670 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
| 671 |
+
# and should be between [0, 1]
|
| 672 |
+
|
| 673 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 674 |
+
extra_step_kwargs = {}
|
| 675 |
+
if accepts_eta:
|
| 676 |
+
extra_step_kwargs["eta"] = eta
|
| 677 |
+
|
| 678 |
+
# check if the scheduler accepts generator
|
| 679 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 680 |
+
if accepts_generator:
|
| 681 |
+
extra_step_kwargs["generator"] = generator
|
| 682 |
+
return extra_step_kwargs
|
| 683 |
+
|
| 684 |
+
def prepare_latents(self, image, timestep, batch_size, height, width, dtype, device, generator, latents=None):
|
| 685 |
+
if image is None:
|
| 686 |
+
shape = (
|
| 687 |
+
batch_size,
|
| 688 |
+
self.unet.in_channels,
|
| 689 |
+
height // self.vae_scale_factor,
|
| 690 |
+
width // self.vae_scale_factor,
|
| 691 |
+
)
|
| 692 |
+
|
| 693 |
+
if latents is None:
|
| 694 |
+
if device.type == "mps":
|
| 695 |
+
# randn does not work reproducibly on mps
|
| 696 |
+
latents = torch.randn(shape, generator=generator, device="cpu", dtype=dtype).to(device)
|
| 697 |
+
else:
|
| 698 |
+
latents = torch.randn(shape, generator=generator, device=device, dtype=dtype)
|
| 699 |
+
else:
|
| 700 |
+
if latents.shape != shape:
|
| 701 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
| 702 |
+
latents = latents.to(device)
|
| 703 |
+
|
| 704 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
| 705 |
+
latents = latents * self.scheduler.init_noise_sigma
|
| 706 |
+
return latents, None, None
|
| 707 |
+
else:
|
| 708 |
+
init_latent_dist = self.vae.encode(image).latent_dist
|
| 709 |
+
init_latents = init_latent_dist.sample(generator=generator)
|
| 710 |
+
init_latents = 0.18215 * init_latents
|
| 711 |
+
init_latents = torch.cat([init_latents] * batch_size, dim=0)
|
| 712 |
+
init_latents_orig = init_latents
|
| 713 |
+
shape = init_latents.shape
|
| 714 |
+
|
| 715 |
+
# add noise to latents using the timesteps
|
| 716 |
+
if device.type == "mps":
|
| 717 |
+
noise = torch.randn(shape, generator=generator, device="cpu", dtype=dtype).to(device)
|
| 718 |
+
else:
|
| 719 |
+
noise = torch.randn(shape, generator=generator, device=device, dtype=dtype)
|
| 720 |
+
latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
| 721 |
+
return latents, init_latents_orig, noise
|
| 722 |
+
|
| 723 |
+
@torch.no_grad()
|
| 724 |
+
def __call__(
|
| 725 |
+
self,
|
| 726 |
+
prompt: Union[str, List[str]],
|
| 727 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 728 |
+
image: Union[torch.FloatTensor, PIL.Image.Image] = None,
|
| 729 |
+
mask_image: Union[torch.FloatTensor, PIL.Image.Image] = None,
|
| 730 |
+
height: int = 512,
|
| 731 |
+
width: int = 512,
|
| 732 |
+
num_inference_steps: int = 50,
|
| 733 |
+
guidance_scale: float = 7.5,
|
| 734 |
+
strength: float = 0.8,
|
| 735 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 736 |
+
eta: float = 0.0,
|
| 737 |
+
generator: Optional[torch.Generator] = None,
|
| 738 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 739 |
+
max_embeddings_multiples: Optional[int] = 3,
|
| 740 |
+
output_type: Optional[str] = "pil",
|
| 741 |
+
return_dict: bool = True,
|
| 742 |
+
controlnet=None,
|
| 743 |
+
controlnet_image=None,
|
| 744 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 745 |
+
is_cancelled_callback: Optional[Callable[[], bool]] = None,
|
| 746 |
+
callback_steps: int = 1,
|
| 747 |
+
):
|
| 748 |
+
r"""
|
| 749 |
+
Function invoked when calling the pipeline for generation.
|
| 750 |
+
|
| 751 |
+
Args:
|
| 752 |
+
prompt (`str` or `List[str]`):
|
| 753 |
+
The prompt or prompts to guide the image generation.
|
| 754 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 755 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
| 756 |
+
if `guidance_scale` is less than `1`).
|
| 757 |
+
image (`torch.FloatTensor` or `PIL.Image.Image`):
|
| 758 |
+
`Image`, or tensor representing an image batch, that will be used as the starting point for the
|
| 759 |
+
process.
|
| 760 |
+
mask_image (`torch.FloatTensor` or `PIL.Image.Image`):
|
| 761 |
+
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
|
| 762 |
+
replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a
|
| 763 |
+
PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should
|
| 764 |
+
contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`.
|
| 765 |
+
height (`int`, *optional*, defaults to 512):
|
| 766 |
+
The height in pixels of the generated image.
|
| 767 |
+
width (`int`, *optional*, defaults to 512):
|
| 768 |
+
The width in pixels of the generated image.
|
| 769 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 770 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 771 |
+
expense of slower inference.
|
| 772 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
| 773 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
| 774 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
| 775 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 776 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 777 |
+
usually at the expense of lower image quality.
|
| 778 |
+
strength (`float`, *optional*, defaults to 0.8):
|
| 779 |
+
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1.
|
| 780 |
+
`image` will be used as a starting point, adding more noise to it the larger the `strength`. The
|
| 781 |
+
number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added
|
| 782 |
+
noise will be maximum and the denoising process will run for the full number of iterations specified in
|
| 783 |
+
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
|
| 784 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 785 |
+
The number of images to generate per prompt.
|
| 786 |
+
eta (`float`, *optional*, defaults to 0.0):
|
| 787 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 788 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
| 789 |
+
generator (`torch.Generator`, *optional*):
|
| 790 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
| 791 |
+
deterministic.
|
| 792 |
+
latents (`torch.FloatTensor`, *optional*):
|
| 793 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 794 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 795 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
| 796 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
| 797 |
+
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
| 798 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 799 |
+
The output format of the generate image. Choose between
|
| 800 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
| 801 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 802 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
| 803 |
+
plain tuple.
|
| 804 |
+
controlnet (`diffusers.ControlNetModel`, *optional*):
|
| 805 |
+
A controlnet model to be used for the inference. If not provided, controlnet will be disabled.
|
| 806 |
+
controlnet_image (`torch.FloatTensor` or `PIL.Image.Image`, *optional*):
|
| 807 |
+
`Image`, or tensor representing an image batch, to be used as the starting point for the controlnet
|
| 808 |
+
inference.
|
| 809 |
+
callback (`Callable`, *optional*):
|
| 810 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
| 811 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
| 812 |
+
is_cancelled_callback (`Callable`, *optional*):
|
| 813 |
+
A function that will be called every `callback_steps` steps during inference. If the function returns
|
| 814 |
+
`True`, the inference will be cancelled.
|
| 815 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
| 816 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
| 817 |
+
called at every step.
|
| 818 |
+
|
| 819 |
+
Returns:
|
| 820 |
+
`None` if cancelled by `is_cancelled_callback`,
|
| 821 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
| 822 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
| 823 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
| 824 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
| 825 |
+
(nsfw) content, according to the `safety_checker`.
|
| 826 |
+
"""
|
| 827 |
+
if controlnet is not None and controlnet_image is None:
|
| 828 |
+
raise ValueError("controlnet_image must be provided if controlnet is not None.")
|
| 829 |
+
|
| 830 |
+
# 0. Default height and width to unet
|
| 831 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
| 832 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
| 833 |
+
|
| 834 |
+
# 1. Check inputs. Raise error if not correct
|
| 835 |
+
self.check_inputs(prompt, height, width, strength, callback_steps)
|
| 836 |
+
|
| 837 |
+
# 2. Define call parameters
|
| 838 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
| 839 |
+
device = self._execution_device
|
| 840 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 841 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 842 |
+
# corresponds to doing no classifier free guidance.
|
| 843 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
| 844 |
+
|
| 845 |
+
# 3. Encode input prompt
|
| 846 |
+
text_embeddings = self._encode_prompt(
|
| 847 |
+
prompt,
|
| 848 |
+
device,
|
| 849 |
+
num_images_per_prompt,
|
| 850 |
+
do_classifier_free_guidance,
|
| 851 |
+
negative_prompt,
|
| 852 |
+
max_embeddings_multiples,
|
| 853 |
+
)
|
| 854 |
+
dtype = text_embeddings.dtype
|
| 855 |
+
|
| 856 |
+
# 4. Preprocess image and mask
|
| 857 |
+
if isinstance(image, PIL.Image.Image):
|
| 858 |
+
image = preprocess_image(image)
|
| 859 |
+
if image is not None:
|
| 860 |
+
image = image.to(device=self.device, dtype=dtype)
|
| 861 |
+
if isinstance(mask_image, PIL.Image.Image):
|
| 862 |
+
mask_image = preprocess_mask(mask_image, self.vae_scale_factor)
|
| 863 |
+
if mask_image is not None:
|
| 864 |
+
mask = mask_image.to(device=self.device, dtype=dtype)
|
| 865 |
+
mask = torch.cat([mask] * batch_size * num_images_per_prompt)
|
| 866 |
+
else:
|
| 867 |
+
mask = None
|
| 868 |
+
|
| 869 |
+
if controlnet_image is not None:
|
| 870 |
+
controlnet_image = prepare_controlnet_image(
|
| 871 |
+
controlnet_image, width, height, batch_size, 1, self.device, controlnet.dtype, do_classifier_free_guidance, False
|
| 872 |
+
)
|
| 873 |
+
|
| 874 |
+
# 5. set timesteps
|
| 875 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 876 |
+
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device, image is None)
|
| 877 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
| 878 |
+
|
| 879 |
+
# 6. Prepare latent variables
|
| 880 |
+
latents, init_latents_orig, noise = self.prepare_latents(
|
| 881 |
+
image,
|
| 882 |
+
latent_timestep,
|
| 883 |
+
batch_size * num_images_per_prompt,
|
| 884 |
+
height,
|
| 885 |
+
width,
|
| 886 |
+
dtype,
|
| 887 |
+
device,
|
| 888 |
+
generator,
|
| 889 |
+
latents,
|
| 890 |
+
)
|
| 891 |
+
|
| 892 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
| 893 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 894 |
+
|
| 895 |
+
# 8. Denoising loop
|
| 896 |
+
for i, t in enumerate(self.progress_bar(timesteps)):
|
| 897 |
+
# expand the latents if we are doing classifier free guidance
|
| 898 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
| 899 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 900 |
+
|
| 901 |
+
unet_additional_args = {}
|
| 902 |
+
if controlnet is not None:
|
| 903 |
+
down_block_res_samples, mid_block_res_sample = controlnet(
|
| 904 |
+
latent_model_input,
|
| 905 |
+
t,
|
| 906 |
+
encoder_hidden_states=text_embeddings,
|
| 907 |
+
controlnet_cond=controlnet_image,
|
| 908 |
+
conditioning_scale=1.0,
|
| 909 |
+
guess_mode=False,
|
| 910 |
+
return_dict=False,
|
| 911 |
+
)
|
| 912 |
+
unet_additional_args["down_block_additional_residuals"] = down_block_res_samples
|
| 913 |
+
unet_additional_args["mid_block_additional_residual"] = mid_block_res_sample
|
| 914 |
+
|
| 915 |
+
# predict the noise residual
|
| 916 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings, **unet_additional_args).sample
|
| 917 |
+
|
| 918 |
+
# perform guidance
|
| 919 |
+
if do_classifier_free_guidance:
|
| 920 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 921 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 922 |
+
|
| 923 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 924 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
| 925 |
+
|
| 926 |
+
if mask is not None:
|
| 927 |
+
# masking
|
| 928 |
+
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
|
| 929 |
+
latents = (init_latents_proper * mask) + (latents * (1 - mask))
|
| 930 |
+
|
| 931 |
+
# call the callback, if provided
|
| 932 |
+
if i % callback_steps == 0:
|
| 933 |
+
if callback is not None:
|
| 934 |
+
callback(i, t, latents)
|
| 935 |
+
if is_cancelled_callback is not None and is_cancelled_callback():
|
| 936 |
+
return None
|
| 937 |
+
|
| 938 |
+
return latents
|
| 939 |
+
|
| 940 |
+
def latents_to_image(self, latents):
|
| 941 |
+
# 9. Post-processing
|
| 942 |
+
image = self.decode_latents(latents.to(self.vae.dtype))
|
| 943 |
+
image = self.numpy_to_pil(image)
|
| 944 |
+
return image
|
| 945 |
+
|
| 946 |
+
def text2img(
|
| 947 |
+
self,
|
| 948 |
+
prompt: Union[str, List[str]],
|
| 949 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 950 |
+
height: int = 512,
|
| 951 |
+
width: int = 512,
|
| 952 |
+
num_inference_steps: int = 50,
|
| 953 |
+
guidance_scale: float = 7.5,
|
| 954 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 955 |
+
eta: float = 0.0,
|
| 956 |
+
generator: Optional[torch.Generator] = None,
|
| 957 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 958 |
+
max_embeddings_multiples: Optional[int] = 3,
|
| 959 |
+
output_type: Optional[str] = "pil",
|
| 960 |
+
return_dict: bool = True,
|
| 961 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 962 |
+
is_cancelled_callback: Optional[Callable[[], bool]] = None,
|
| 963 |
+
callback_steps: int = 1,
|
| 964 |
+
):
|
| 965 |
+
r"""
|
| 966 |
+
Function for text-to-image generation.
|
| 967 |
+
Args:
|
| 968 |
+
prompt (`str` or `List[str]`):
|
| 969 |
+
The prompt or prompts to guide the image generation.
|
| 970 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 971 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
| 972 |
+
if `guidance_scale` is less than `1`).
|
| 973 |
+
height (`int`, *optional*, defaults to 512):
|
| 974 |
+
The height in pixels of the generated image.
|
| 975 |
+
width (`int`, *optional*, defaults to 512):
|
| 976 |
+
The width in pixels of the generated image.
|
| 977 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 978 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 979 |
+
expense of slower inference.
|
| 980 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
| 981 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
| 982 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
| 983 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 984 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 985 |
+
usually at the expense of lower image quality.
|
| 986 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 987 |
+
The number of images to generate per prompt.
|
| 988 |
+
eta (`float`, *optional*, defaults to 0.0):
|
| 989 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 990 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
| 991 |
+
generator (`torch.Generator`, *optional*):
|
| 992 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
| 993 |
+
deterministic.
|
| 994 |
+
latents (`torch.FloatTensor`, *optional*):
|
| 995 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 996 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 997 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
| 998 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
| 999 |
+
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
| 1000 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 1001 |
+
The output format of the generate image. Choose between
|
| 1002 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
| 1003 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 1004 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
| 1005 |
+
plain tuple.
|
| 1006 |
+
callback (`Callable`, *optional*):
|
| 1007 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
| 1008 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
| 1009 |
+
is_cancelled_callback (`Callable`, *optional*):
|
| 1010 |
+
A function that will be called every `callback_steps` steps during inference. If the function returns
|
| 1011 |
+
`True`, the inference will be cancelled.
|
| 1012 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
| 1013 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
| 1014 |
+
called at every step.
|
| 1015 |
+
Returns:
|
| 1016 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
| 1017 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
| 1018 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
| 1019 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
| 1020 |
+
(nsfw) content, according to the `safety_checker`.
|
| 1021 |
+
"""
|
| 1022 |
+
return self.__call__(
|
| 1023 |
+
prompt=prompt,
|
| 1024 |
+
negative_prompt=negative_prompt,
|
| 1025 |
+
height=height,
|
| 1026 |
+
width=width,
|
| 1027 |
+
num_inference_steps=num_inference_steps,
|
| 1028 |
+
guidance_scale=guidance_scale,
|
| 1029 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 1030 |
+
eta=eta,
|
| 1031 |
+
generator=generator,
|
| 1032 |
+
latents=latents,
|
| 1033 |
+
max_embeddings_multiples=max_embeddings_multiples,
|
| 1034 |
+
output_type=output_type,
|
| 1035 |
+
return_dict=return_dict,
|
| 1036 |
+
callback=callback,
|
| 1037 |
+
is_cancelled_callback=is_cancelled_callback,
|
| 1038 |
+
callback_steps=callback_steps,
|
| 1039 |
+
)
|
| 1040 |
+
|
| 1041 |
+
def img2img(
|
| 1042 |
+
self,
|
| 1043 |
+
image: Union[torch.FloatTensor, PIL.Image.Image],
|
| 1044 |
+
prompt: Union[str, List[str]],
|
| 1045 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 1046 |
+
strength: float = 0.8,
|
| 1047 |
+
num_inference_steps: Optional[int] = 50,
|
| 1048 |
+
guidance_scale: Optional[float] = 7.5,
|
| 1049 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 1050 |
+
eta: Optional[float] = 0.0,
|
| 1051 |
+
generator: Optional[torch.Generator] = None,
|
| 1052 |
+
max_embeddings_multiples: Optional[int] = 3,
|
| 1053 |
+
output_type: Optional[str] = "pil",
|
| 1054 |
+
return_dict: bool = True,
|
| 1055 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 1056 |
+
is_cancelled_callback: Optional[Callable[[], bool]] = None,
|
| 1057 |
+
callback_steps: int = 1,
|
| 1058 |
+
):
|
| 1059 |
+
r"""
|
| 1060 |
+
Function for image-to-image generation.
|
| 1061 |
+
Args:
|
| 1062 |
+
image (`torch.FloatTensor` or `PIL.Image.Image`):
|
| 1063 |
+
`Image`, or tensor representing an image batch, that will be used as the starting point for the
|
| 1064 |
+
process.
|
| 1065 |
+
prompt (`str` or `List[str]`):
|
| 1066 |
+
The prompt or prompts to guide the image generation.
|
| 1067 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 1068 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
| 1069 |
+
if `guidance_scale` is less than `1`).
|
| 1070 |
+
strength (`float`, *optional*, defaults to 0.8):
|
| 1071 |
+
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1.
|
| 1072 |
+
`image` will be used as a starting point, adding more noise to it the larger the `strength`. The
|
| 1073 |
+
number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added
|
| 1074 |
+
noise will be maximum and the denoising process will run for the full number of iterations specified in
|
| 1075 |
+
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
|
| 1076 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 1077 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 1078 |
+
expense of slower inference. This parameter will be modulated by `strength`.
|
| 1079 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
| 1080 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
| 1081 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
| 1082 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 1083 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 1084 |
+
usually at the expense of lower image quality.
|
| 1085 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 1086 |
+
The number of images to generate per prompt.
|
| 1087 |
+
eta (`float`, *optional*, defaults to 0.0):
|
| 1088 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 1089 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
| 1090 |
+
generator (`torch.Generator`, *optional*):
|
| 1091 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
| 1092 |
+
deterministic.
|
| 1093 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
| 1094 |
+
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
| 1095 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 1096 |
+
The output format of the generate image. Choose between
|
| 1097 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
| 1098 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 1099 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
| 1100 |
+
plain tuple.
|
| 1101 |
+
callback (`Callable`, *optional*):
|
| 1102 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
| 1103 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
| 1104 |
+
is_cancelled_callback (`Callable`, *optional*):
|
| 1105 |
+
A function that will be called every `callback_steps` steps during inference. If the function returns
|
| 1106 |
+
`True`, the inference will be cancelled.
|
| 1107 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
| 1108 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
| 1109 |
+
called at every step.
|
| 1110 |
+
Returns:
|
| 1111 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
| 1112 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
| 1113 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
| 1114 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
| 1115 |
+
(nsfw) content, according to the `safety_checker`.
|
| 1116 |
+
"""
|
| 1117 |
+
return self.__call__(
|
| 1118 |
+
prompt=prompt,
|
| 1119 |
+
negative_prompt=negative_prompt,
|
| 1120 |
+
image=image,
|
| 1121 |
+
num_inference_steps=num_inference_steps,
|
| 1122 |
+
guidance_scale=guidance_scale,
|
| 1123 |
+
strength=strength,
|
| 1124 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 1125 |
+
eta=eta,
|
| 1126 |
+
generator=generator,
|
| 1127 |
+
max_embeddings_multiples=max_embeddings_multiples,
|
| 1128 |
+
output_type=output_type,
|
| 1129 |
+
return_dict=return_dict,
|
| 1130 |
+
callback=callback,
|
| 1131 |
+
is_cancelled_callback=is_cancelled_callback,
|
| 1132 |
+
callback_steps=callback_steps,
|
| 1133 |
+
)
|
| 1134 |
+
|
| 1135 |
+
def inpaint(
|
| 1136 |
+
self,
|
| 1137 |
+
image: Union[torch.FloatTensor, PIL.Image.Image],
|
| 1138 |
+
mask_image: Union[torch.FloatTensor, PIL.Image.Image],
|
| 1139 |
+
prompt: Union[str, List[str]],
|
| 1140 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 1141 |
+
strength: float = 0.8,
|
| 1142 |
+
num_inference_steps: Optional[int] = 50,
|
| 1143 |
+
guidance_scale: Optional[float] = 7.5,
|
| 1144 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 1145 |
+
eta: Optional[float] = 0.0,
|
| 1146 |
+
generator: Optional[torch.Generator] = None,
|
| 1147 |
+
max_embeddings_multiples: Optional[int] = 3,
|
| 1148 |
+
output_type: Optional[str] = "pil",
|
| 1149 |
+
return_dict: bool = True,
|
| 1150 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 1151 |
+
is_cancelled_callback: Optional[Callable[[], bool]] = None,
|
| 1152 |
+
callback_steps: int = 1,
|
| 1153 |
+
):
|
| 1154 |
+
r"""
|
| 1155 |
+
Function for inpaint.
|
| 1156 |
+
Args:
|
| 1157 |
+
image (`torch.FloatTensor` or `PIL.Image.Image`):
|
| 1158 |
+
`Image`, or tensor representing an image batch, that will be used as the starting point for the
|
| 1159 |
+
process. This is the image whose masked region will be inpainted.
|
| 1160 |
+
mask_image (`torch.FloatTensor` or `PIL.Image.Image`):
|
| 1161 |
+
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
|
| 1162 |
+
replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a
|
| 1163 |
+
PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should
|
| 1164 |
+
contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`.
|
| 1165 |
+
prompt (`str` or `List[str]`):
|
| 1166 |
+
The prompt or prompts to guide the image generation.
|
| 1167 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 1168 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
| 1169 |
+
if `guidance_scale` is less than `1`).
|
| 1170 |
+
strength (`float`, *optional*, defaults to 0.8):
|
| 1171 |
+
Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. When `strength`
|
| 1172 |
+
is 1, the denoising process will be run on the masked area for the full number of iterations specified
|
| 1173 |
+
in `num_inference_steps`. `image` will be used as a reference for the masked area, adding more
|
| 1174 |
+
noise to that region the larger the `strength`. If `strength` is 0, no inpainting will occur.
|
| 1175 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 1176 |
+
The reference number of denoising steps. More denoising steps usually lead to a higher quality image at
|
| 1177 |
+
the expense of slower inference. This parameter will be modulated by `strength`, as explained above.
|
| 1178 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
| 1179 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
| 1180 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
| 1181 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 1182 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 1183 |
+
usually at the expense of lower image quality.
|
| 1184 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 1185 |
+
The number of images to generate per prompt.
|
| 1186 |
+
eta (`float`, *optional*, defaults to 0.0):
|
| 1187 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 1188 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
| 1189 |
+
generator (`torch.Generator`, *optional*):
|
| 1190 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
| 1191 |
+
deterministic.
|
| 1192 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
| 1193 |
+
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
| 1194 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 1195 |
+
The output format of the generate image. Choose between
|
| 1196 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
| 1197 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 1198 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
| 1199 |
+
plain tuple.
|
| 1200 |
+
callback (`Callable`, *optional*):
|
| 1201 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
| 1202 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
| 1203 |
+
is_cancelled_callback (`Callable`, *optional*):
|
| 1204 |
+
A function that will be called every `callback_steps` steps during inference. If the function returns
|
| 1205 |
+
`True`, the inference will be cancelled.
|
| 1206 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
| 1207 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
| 1208 |
+
called at every step.
|
| 1209 |
+
Returns:
|
| 1210 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
| 1211 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
| 1212 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
| 1213 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
| 1214 |
+
(nsfw) content, according to the `safety_checker`.
|
| 1215 |
+
"""
|
| 1216 |
+
return self.__call__(
|
| 1217 |
+
prompt=prompt,
|
| 1218 |
+
negative_prompt=negative_prompt,
|
| 1219 |
+
image=image,
|
| 1220 |
+
mask_image=mask_image,
|
| 1221 |
+
num_inference_steps=num_inference_steps,
|
| 1222 |
+
guidance_scale=guidance_scale,
|
| 1223 |
+
strength=strength,
|
| 1224 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 1225 |
+
eta=eta,
|
| 1226 |
+
generator=generator,
|
| 1227 |
+
max_embeddings_multiples=max_embeddings_multiples,
|
| 1228 |
+
output_type=output_type,
|
| 1229 |
+
return_dict=return_dict,
|
| 1230 |
+
callback=callback,
|
| 1231 |
+
is_cancelled_callback=is_cancelled_callback,
|
| 1232 |
+
callback_steps=callback_steps,
|
| 1233 |
+
)
|