Upload lora-scripts/sd-scripts/networks/resize_lora.py with huggingface_hub
Browse files
lora-scripts/sd-scripts/networks/resize_lora.py
ADDED
|
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Convert LoRA to different rank approximation (should only be used to go to lower rank)
|
| 2 |
+
# This code is based off the extract_lora_from_models.py file which is based on https://github.com/cloneofsimo/lora/blob/develop/lora_diffusion/cli_svd.py
|
| 3 |
+
# Thanks to cloneofsimo
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
import argparse
|
| 7 |
+
import torch
|
| 8 |
+
from safetensors.torch import load_file, save_file, safe_open
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
import numpy as np
|
| 11 |
+
|
| 12 |
+
from library import train_util
|
| 13 |
+
from library import model_util
|
| 14 |
+
from library.utils import setup_logging
|
| 15 |
+
|
| 16 |
+
setup_logging()
|
| 17 |
+
import logging
|
| 18 |
+
|
| 19 |
+
logger = logging.getLogger(__name__)
|
| 20 |
+
|
| 21 |
+
MIN_SV = 1e-6
|
| 22 |
+
|
| 23 |
+
# Model save and load functions
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def load_state_dict(file_name, dtype):
|
| 27 |
+
if model_util.is_safetensors(file_name):
|
| 28 |
+
sd = load_file(file_name)
|
| 29 |
+
with safe_open(file_name, framework="pt") as f:
|
| 30 |
+
metadata = f.metadata()
|
| 31 |
+
else:
|
| 32 |
+
sd = torch.load(file_name, map_location="cpu")
|
| 33 |
+
metadata = None
|
| 34 |
+
|
| 35 |
+
for key in list(sd.keys()):
|
| 36 |
+
if type(sd[key]) == torch.Tensor:
|
| 37 |
+
sd[key] = sd[key].to(dtype)
|
| 38 |
+
|
| 39 |
+
return sd, metadata
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def save_to_file(file_name, state_dict, dtype, metadata):
|
| 43 |
+
if dtype is not None:
|
| 44 |
+
for key in list(state_dict.keys()):
|
| 45 |
+
if type(state_dict[key]) == torch.Tensor:
|
| 46 |
+
state_dict[key] = state_dict[key].to(dtype)
|
| 47 |
+
|
| 48 |
+
if model_util.is_safetensors(file_name):
|
| 49 |
+
save_file(state_dict, file_name, metadata)
|
| 50 |
+
else:
|
| 51 |
+
torch.save(state_dict, file_name)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
# Indexing functions
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def index_sv_cumulative(S, target):
|
| 58 |
+
original_sum = float(torch.sum(S))
|
| 59 |
+
cumulative_sums = torch.cumsum(S, dim=0) / original_sum
|
| 60 |
+
index = int(torch.searchsorted(cumulative_sums, target)) + 1
|
| 61 |
+
index = max(1, min(index, len(S) - 1))
|
| 62 |
+
|
| 63 |
+
return index
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def index_sv_fro(S, target):
|
| 67 |
+
S_squared = S.pow(2)
|
| 68 |
+
S_fro_sq = float(torch.sum(S_squared))
|
| 69 |
+
sum_S_squared = torch.cumsum(S_squared, dim=0) / S_fro_sq
|
| 70 |
+
index = int(torch.searchsorted(sum_S_squared, target**2)) + 1
|
| 71 |
+
index = max(1, min(index, len(S) - 1))
|
| 72 |
+
|
| 73 |
+
return index
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def index_sv_ratio(S, target):
|
| 77 |
+
max_sv = S[0]
|
| 78 |
+
min_sv = max_sv / target
|
| 79 |
+
index = int(torch.sum(S > min_sv).item())
|
| 80 |
+
index = max(1, min(index, len(S) - 1))
|
| 81 |
+
|
| 82 |
+
return index
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
# Modified from Kohaku-blueleaf's extract/merge functions
|
| 86 |
+
def extract_conv(weight, lora_rank, dynamic_method, dynamic_param, device, scale=1):
|
| 87 |
+
out_size, in_size, kernel_size, _ = weight.size()
|
| 88 |
+
U, S, Vh = torch.linalg.svd(weight.reshape(out_size, -1).to(device))
|
| 89 |
+
|
| 90 |
+
param_dict = rank_resize(S, lora_rank, dynamic_method, dynamic_param, scale)
|
| 91 |
+
lora_rank = param_dict["new_rank"]
|
| 92 |
+
|
| 93 |
+
U = U[:, :lora_rank]
|
| 94 |
+
S = S[:lora_rank]
|
| 95 |
+
U = U @ torch.diag(S)
|
| 96 |
+
Vh = Vh[:lora_rank, :]
|
| 97 |
+
|
| 98 |
+
param_dict["lora_down"] = Vh.reshape(lora_rank, in_size, kernel_size, kernel_size).cpu()
|
| 99 |
+
param_dict["lora_up"] = U.reshape(out_size, lora_rank, 1, 1).cpu()
|
| 100 |
+
del U, S, Vh, weight
|
| 101 |
+
return param_dict
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def extract_linear(weight, lora_rank, dynamic_method, dynamic_param, device, scale=1):
|
| 105 |
+
out_size, in_size = weight.size()
|
| 106 |
+
|
| 107 |
+
U, S, Vh = torch.linalg.svd(weight.to(device))
|
| 108 |
+
|
| 109 |
+
param_dict = rank_resize(S, lora_rank, dynamic_method, dynamic_param, scale)
|
| 110 |
+
lora_rank = param_dict["new_rank"]
|
| 111 |
+
|
| 112 |
+
U = U[:, :lora_rank]
|
| 113 |
+
S = S[:lora_rank]
|
| 114 |
+
U = U @ torch.diag(S)
|
| 115 |
+
Vh = Vh[:lora_rank, :]
|
| 116 |
+
|
| 117 |
+
param_dict["lora_down"] = Vh.reshape(lora_rank, in_size).cpu()
|
| 118 |
+
param_dict["lora_up"] = U.reshape(out_size, lora_rank).cpu()
|
| 119 |
+
del U, S, Vh, weight
|
| 120 |
+
return param_dict
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def merge_conv(lora_down, lora_up, device):
|
| 124 |
+
in_rank, in_size, kernel_size, k_ = lora_down.shape
|
| 125 |
+
out_size, out_rank, _, _ = lora_up.shape
|
| 126 |
+
assert in_rank == out_rank and kernel_size == k_, f"rank {in_rank} {out_rank} or kernel {kernel_size} {k_} mismatch"
|
| 127 |
+
|
| 128 |
+
lora_down = lora_down.to(device)
|
| 129 |
+
lora_up = lora_up.to(device)
|
| 130 |
+
|
| 131 |
+
merged = lora_up.reshape(out_size, -1) @ lora_down.reshape(in_rank, -1)
|
| 132 |
+
weight = merged.reshape(out_size, in_size, kernel_size, kernel_size)
|
| 133 |
+
del lora_up, lora_down
|
| 134 |
+
return weight
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def merge_linear(lora_down, lora_up, device):
|
| 138 |
+
in_rank, in_size = lora_down.shape
|
| 139 |
+
out_size, out_rank = lora_up.shape
|
| 140 |
+
assert in_rank == out_rank, f"rank {in_rank} {out_rank} mismatch"
|
| 141 |
+
|
| 142 |
+
lora_down = lora_down.to(device)
|
| 143 |
+
lora_up = lora_up.to(device)
|
| 144 |
+
|
| 145 |
+
weight = lora_up @ lora_down
|
| 146 |
+
del lora_up, lora_down
|
| 147 |
+
return weight
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
# Calculate new rank
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
def rank_resize(S, rank, dynamic_method, dynamic_param, scale=1):
|
| 154 |
+
param_dict = {}
|
| 155 |
+
|
| 156 |
+
if dynamic_method == "sv_ratio":
|
| 157 |
+
# Calculate new dim and alpha based off ratio
|
| 158 |
+
new_rank = index_sv_ratio(S, dynamic_param) + 1
|
| 159 |
+
new_alpha = float(scale * new_rank)
|
| 160 |
+
|
| 161 |
+
elif dynamic_method == "sv_cumulative":
|
| 162 |
+
# Calculate new dim and alpha based off cumulative sum
|
| 163 |
+
new_rank = index_sv_cumulative(S, dynamic_param) + 1
|
| 164 |
+
new_alpha = float(scale * new_rank)
|
| 165 |
+
|
| 166 |
+
elif dynamic_method == "sv_fro":
|
| 167 |
+
# Calculate new dim and alpha based off sqrt sum of squares
|
| 168 |
+
new_rank = index_sv_fro(S, dynamic_param) + 1
|
| 169 |
+
new_alpha = float(scale * new_rank)
|
| 170 |
+
else:
|
| 171 |
+
new_rank = rank
|
| 172 |
+
new_alpha = float(scale * new_rank)
|
| 173 |
+
|
| 174 |
+
if S[0] <= MIN_SV: # Zero matrix, set dim to 1
|
| 175 |
+
new_rank = 1
|
| 176 |
+
new_alpha = float(scale * new_rank)
|
| 177 |
+
elif new_rank > rank: # cap max rank at rank
|
| 178 |
+
new_rank = rank
|
| 179 |
+
new_alpha = float(scale * new_rank)
|
| 180 |
+
|
| 181 |
+
# Calculate resize info
|
| 182 |
+
s_sum = torch.sum(torch.abs(S))
|
| 183 |
+
s_rank = torch.sum(torch.abs(S[:new_rank]))
|
| 184 |
+
|
| 185 |
+
S_squared = S.pow(2)
|
| 186 |
+
s_fro = torch.sqrt(torch.sum(S_squared))
|
| 187 |
+
s_red_fro = torch.sqrt(torch.sum(S_squared[:new_rank]))
|
| 188 |
+
fro_percent = float(s_red_fro / s_fro)
|
| 189 |
+
|
| 190 |
+
param_dict["new_rank"] = new_rank
|
| 191 |
+
param_dict["new_alpha"] = new_alpha
|
| 192 |
+
param_dict["sum_retained"] = (s_rank) / s_sum
|
| 193 |
+
param_dict["fro_retained"] = fro_percent
|
| 194 |
+
param_dict["max_ratio"] = S[0] / S[new_rank - 1]
|
| 195 |
+
|
| 196 |
+
return param_dict
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
def resize_lora_model(lora_sd, new_rank, new_conv_rank, save_dtype, device, dynamic_method, dynamic_param, verbose):
|
| 200 |
+
network_alpha = None
|
| 201 |
+
network_dim = None
|
| 202 |
+
verbose_str = "\n"
|
| 203 |
+
fro_list = []
|
| 204 |
+
|
| 205 |
+
# Extract loaded lora dim and alpha
|
| 206 |
+
for key, value in lora_sd.items():
|
| 207 |
+
if network_alpha is None and "alpha" in key:
|
| 208 |
+
network_alpha = value
|
| 209 |
+
if network_dim is None and "lora_down" in key and len(value.size()) == 2:
|
| 210 |
+
network_dim = value.size()[0]
|
| 211 |
+
if network_alpha is not None and network_dim is not None:
|
| 212 |
+
break
|
| 213 |
+
if network_alpha is None:
|
| 214 |
+
network_alpha = network_dim
|
| 215 |
+
|
| 216 |
+
scale = network_alpha / network_dim
|
| 217 |
+
|
| 218 |
+
if dynamic_method:
|
| 219 |
+
logger.info(
|
| 220 |
+
f"Dynamically determining new alphas and dims based off {dynamic_method}: {dynamic_param}, max rank is {new_rank}"
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
lora_down_weight = None
|
| 224 |
+
lora_up_weight = None
|
| 225 |
+
|
| 226 |
+
o_lora_sd = lora_sd.copy()
|
| 227 |
+
block_down_name = None
|
| 228 |
+
block_up_name = None
|
| 229 |
+
|
| 230 |
+
with torch.no_grad():
|
| 231 |
+
for key, value in tqdm(lora_sd.items()):
|
| 232 |
+
weight_name = None
|
| 233 |
+
if "lora_down" in key:
|
| 234 |
+
block_down_name = key.rsplit(".lora_down", 1)[0]
|
| 235 |
+
weight_name = key.rsplit(".", 1)[-1]
|
| 236 |
+
lora_down_weight = value
|
| 237 |
+
else:
|
| 238 |
+
continue
|
| 239 |
+
|
| 240 |
+
# find corresponding lora_up and alpha
|
| 241 |
+
block_up_name = block_down_name
|
| 242 |
+
lora_up_weight = lora_sd.get(block_up_name + ".lora_up." + weight_name, None)
|
| 243 |
+
lora_alpha = lora_sd.get(block_down_name + ".alpha", None)
|
| 244 |
+
|
| 245 |
+
weights_loaded = lora_down_weight is not None and lora_up_weight is not None
|
| 246 |
+
|
| 247 |
+
if weights_loaded:
|
| 248 |
+
|
| 249 |
+
conv2d = len(lora_down_weight.size()) == 4
|
| 250 |
+
if lora_alpha is None:
|
| 251 |
+
scale = 1.0
|
| 252 |
+
else:
|
| 253 |
+
scale = lora_alpha / lora_down_weight.size()[0]
|
| 254 |
+
|
| 255 |
+
if conv2d:
|
| 256 |
+
full_weight_matrix = merge_conv(lora_down_weight, lora_up_weight, device)
|
| 257 |
+
param_dict = extract_conv(full_weight_matrix, new_conv_rank, dynamic_method, dynamic_param, device, scale)
|
| 258 |
+
else:
|
| 259 |
+
full_weight_matrix = merge_linear(lora_down_weight, lora_up_weight, device)
|
| 260 |
+
param_dict = extract_linear(full_weight_matrix, new_rank, dynamic_method, dynamic_param, device, scale)
|
| 261 |
+
|
| 262 |
+
if verbose:
|
| 263 |
+
max_ratio = param_dict["max_ratio"]
|
| 264 |
+
sum_retained = param_dict["sum_retained"]
|
| 265 |
+
fro_retained = param_dict["fro_retained"]
|
| 266 |
+
if not np.isnan(fro_retained):
|
| 267 |
+
fro_list.append(float(fro_retained))
|
| 268 |
+
|
| 269 |
+
verbose_str += f"{block_down_name:75} | "
|
| 270 |
+
verbose_str += (
|
| 271 |
+
f"sum(S) retained: {sum_retained:.1%}, fro retained: {fro_retained:.1%}, max(S) ratio: {max_ratio:0.1f}"
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
if verbose and dynamic_method:
|
| 275 |
+
verbose_str += f", dynamic | dim: {param_dict['new_rank']}, alpha: {param_dict['new_alpha']}\n"
|
| 276 |
+
else:
|
| 277 |
+
verbose_str += "\n"
|
| 278 |
+
|
| 279 |
+
new_alpha = param_dict["new_alpha"]
|
| 280 |
+
o_lora_sd[block_down_name + "." + "lora_down.weight"] = param_dict["lora_down"].to(save_dtype).contiguous()
|
| 281 |
+
o_lora_sd[block_up_name + "." + "lora_up.weight"] = param_dict["lora_up"].to(save_dtype).contiguous()
|
| 282 |
+
o_lora_sd[block_up_name + "." "alpha"] = torch.tensor(param_dict["new_alpha"]).to(save_dtype)
|
| 283 |
+
|
| 284 |
+
block_down_name = None
|
| 285 |
+
block_up_name = None
|
| 286 |
+
lora_down_weight = None
|
| 287 |
+
lora_up_weight = None
|
| 288 |
+
weights_loaded = False
|
| 289 |
+
del param_dict
|
| 290 |
+
|
| 291 |
+
if verbose:
|
| 292 |
+
print(verbose_str)
|
| 293 |
+
print(f"Average Frobenius norm retention: {np.mean(fro_list):.2%} | std: {np.std(fro_list):0.3f}")
|
| 294 |
+
logger.info("resizing complete")
|
| 295 |
+
return o_lora_sd, network_dim, new_alpha
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
def resize(args):
|
| 299 |
+
if args.save_to is None or not (
|
| 300 |
+
args.save_to.endswith(".ckpt")
|
| 301 |
+
or args.save_to.endswith(".pt")
|
| 302 |
+
or args.save_to.endswith(".pth")
|
| 303 |
+
or args.save_to.endswith(".safetensors")
|
| 304 |
+
):
|
| 305 |
+
raise Exception("The --save_to argument must be specified and must be a .ckpt , .pt, .pth or .safetensors file.")
|
| 306 |
+
|
| 307 |
+
args.new_conv_rank = args.new_conv_rank if args.new_conv_rank is not None else args.new_rank
|
| 308 |
+
|
| 309 |
+
def str_to_dtype(p):
|
| 310 |
+
if p == "float":
|
| 311 |
+
return torch.float
|
| 312 |
+
if p == "fp16":
|
| 313 |
+
return torch.float16
|
| 314 |
+
if p == "bf16":
|
| 315 |
+
return torch.bfloat16
|
| 316 |
+
return None
|
| 317 |
+
|
| 318 |
+
if args.dynamic_method and not args.dynamic_param:
|
| 319 |
+
raise Exception("If using dynamic_method, then dynamic_param is required")
|
| 320 |
+
|
| 321 |
+
merge_dtype = str_to_dtype("float") # matmul method above only seems to work in float32
|
| 322 |
+
save_dtype = str_to_dtype(args.save_precision)
|
| 323 |
+
if save_dtype is None:
|
| 324 |
+
save_dtype = merge_dtype
|
| 325 |
+
|
| 326 |
+
logger.info("loading Model...")
|
| 327 |
+
lora_sd, metadata = load_state_dict(args.model, merge_dtype)
|
| 328 |
+
|
| 329 |
+
logger.info("Resizing Lora...")
|
| 330 |
+
state_dict, old_dim, new_alpha = resize_lora_model(
|
| 331 |
+
lora_sd, args.new_rank, args.new_conv_rank, save_dtype, args.device, args.dynamic_method, args.dynamic_param, args.verbose
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
# update metadata
|
| 335 |
+
if metadata is None:
|
| 336 |
+
metadata = {}
|
| 337 |
+
|
| 338 |
+
comment = metadata.get("ss_training_comment", "")
|
| 339 |
+
|
| 340 |
+
if not args.dynamic_method:
|
| 341 |
+
conv_desc = "" if args.new_rank == args.new_conv_rank else f" (conv: {args.new_conv_rank})"
|
| 342 |
+
metadata["ss_training_comment"] = f"dimension is resized from {old_dim} to {args.new_rank}{conv_desc}; {comment}"
|
| 343 |
+
metadata["ss_network_dim"] = str(args.new_rank)
|
| 344 |
+
metadata["ss_network_alpha"] = str(new_alpha)
|
| 345 |
+
else:
|
| 346 |
+
metadata["ss_training_comment"] = (
|
| 347 |
+
f"Dynamic resize with {args.dynamic_method}: {args.dynamic_param} from {old_dim}; {comment}"
|
| 348 |
+
)
|
| 349 |
+
metadata["ss_network_dim"] = "Dynamic"
|
| 350 |
+
metadata["ss_network_alpha"] = "Dynamic"
|
| 351 |
+
|
| 352 |
+
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata)
|
| 353 |
+
metadata["sshs_model_hash"] = model_hash
|
| 354 |
+
metadata["sshs_legacy_hash"] = legacy_hash
|
| 355 |
+
|
| 356 |
+
logger.info(f"saving model to: {args.save_to}")
|
| 357 |
+
save_to_file(args.save_to, state_dict, save_dtype, metadata)
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
def setup_parser() -> argparse.ArgumentParser:
|
| 361 |
+
parser = argparse.ArgumentParser()
|
| 362 |
+
|
| 363 |
+
parser.add_argument(
|
| 364 |
+
"--save_precision",
|
| 365 |
+
type=str,
|
| 366 |
+
default=None,
|
| 367 |
+
choices=[None, "float", "fp16", "bf16"],
|
| 368 |
+
help="precision in saving, float if omitted / 保存時の精度、未指定時はfloat",
|
| 369 |
+
)
|
| 370 |
+
parser.add_argument("--new_rank", type=int, default=4, help="Specify rank of output LoRA / 出力するLoRAのrank (dim)")
|
| 371 |
+
parser.add_argument(
|
| 372 |
+
"--new_conv_rank",
|
| 373 |
+
type=int,
|
| 374 |
+
default=None,
|
| 375 |
+
help="Specify rank of output LoRA for Conv2d 3x3, None for same as new_rank / 出力するConv2D 3x3 LoRAのrank (dim)、Noneでnew_rankと同じ",
|
| 376 |
+
)
|
| 377 |
+
parser.add_argument(
|
| 378 |
+
"--save_to",
|
| 379 |
+
type=str,
|
| 380 |
+
default=None,
|
| 381 |
+
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors",
|
| 382 |
+
)
|
| 383 |
+
parser.add_argument(
|
| 384 |
+
"--model",
|
| 385 |
+
type=str,
|
| 386 |
+
default=None,
|
| 387 |
+
help="LoRA model to resize at to new rank: ckpt or safetensors file / 読み込むLoRAモデル、ckptまたはsafetensors",
|
| 388 |
+
)
|
| 389 |
+
parser.add_argument(
|
| 390 |
+
"--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う"
|
| 391 |
+
)
|
| 392 |
+
parser.add_argument(
|
| 393 |
+
"--verbose", action="store_true", help="Display verbose resizing information / rank変更時の詳細情報を出力する"
|
| 394 |
+
)
|
| 395 |
+
parser.add_argument(
|
| 396 |
+
"--dynamic_method",
|
| 397 |
+
type=str,
|
| 398 |
+
default=None,
|
| 399 |
+
choices=[None, "sv_ratio", "sv_fro", "sv_cumulative"],
|
| 400 |
+
help="Specify dynamic resizing method, --new_rank is used as a hard limit for max rank",
|
| 401 |
+
)
|
| 402 |
+
parser.add_argument("--dynamic_param", type=float, default=None, help="Specify target for dynamic reduction")
|
| 403 |
+
|
| 404 |
+
return parser
|
| 405 |
+
|
| 406 |
+
|
| 407 |
+
if __name__ == "__main__":
|
| 408 |
+
parser = setup_parser()
|
| 409 |
+
|
| 410 |
+
args = parser.parse_args()
|
| 411 |
+
resize(args)
|