Upload lora-scripts/sd-scripts/library/config_util.py with huggingface_hub
Browse files
lora-scripts/sd-scripts/library/config_util.py
ADDED
|
@@ -0,0 +1,714 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
from dataclasses import (
|
| 3 |
+
asdict,
|
| 4 |
+
dataclass,
|
| 5 |
+
)
|
| 6 |
+
import functools
|
| 7 |
+
import random
|
| 8 |
+
from textwrap import dedent, indent
|
| 9 |
+
import json
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
|
| 12 |
+
# from toolz import curry
|
| 13 |
+
from typing import (
|
| 14 |
+
List,
|
| 15 |
+
Optional,
|
| 16 |
+
Sequence,
|
| 17 |
+
Tuple,
|
| 18 |
+
Union,
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
import toml
|
| 22 |
+
import voluptuous
|
| 23 |
+
from voluptuous import (
|
| 24 |
+
Any,
|
| 25 |
+
ExactSequence,
|
| 26 |
+
MultipleInvalid,
|
| 27 |
+
Object,
|
| 28 |
+
Required,
|
| 29 |
+
Schema,
|
| 30 |
+
)
|
| 31 |
+
from transformers import CLIPTokenizer
|
| 32 |
+
|
| 33 |
+
from . import train_util
|
| 34 |
+
from .train_util import (
|
| 35 |
+
DreamBoothSubset,
|
| 36 |
+
FineTuningSubset,
|
| 37 |
+
ControlNetSubset,
|
| 38 |
+
DreamBoothDataset,
|
| 39 |
+
FineTuningDataset,
|
| 40 |
+
ControlNetDataset,
|
| 41 |
+
DatasetGroup,
|
| 42 |
+
)
|
| 43 |
+
from .utils import setup_logging
|
| 44 |
+
|
| 45 |
+
setup_logging()
|
| 46 |
+
import logging
|
| 47 |
+
|
| 48 |
+
logger = logging.getLogger(__name__)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def add_config_arguments(parser: argparse.ArgumentParser):
|
| 52 |
+
parser.add_argument(
|
| 53 |
+
"--dataset_config", type=Path, default=None, help="config file for detail settings / 詳細な設定用の設定ファイル"
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
# TODO: inherit Params class in Subset, Dataset
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
@dataclass
|
| 61 |
+
class BaseSubsetParams:
|
| 62 |
+
image_dir: Optional[str] = None
|
| 63 |
+
num_repeats: int = 1
|
| 64 |
+
shuffle_caption: bool = False
|
| 65 |
+
caption_separator: str = (",",)
|
| 66 |
+
keep_tokens: int = 0
|
| 67 |
+
keep_tokens_separator: str = (None,)
|
| 68 |
+
secondary_separator: Optional[str] = None
|
| 69 |
+
enable_wildcard: bool = False
|
| 70 |
+
color_aug: bool = False
|
| 71 |
+
flip_aug: bool = False
|
| 72 |
+
face_crop_aug_range: Optional[Tuple[float, float]] = None
|
| 73 |
+
random_crop: bool = False
|
| 74 |
+
caption_prefix: Optional[str] = None
|
| 75 |
+
caption_suffix: Optional[str] = None
|
| 76 |
+
caption_dropout_rate: float = 0.0
|
| 77 |
+
caption_dropout_every_n_epochs: int = 0
|
| 78 |
+
caption_tag_dropout_rate: float = 0.0
|
| 79 |
+
token_warmup_min: int = 1
|
| 80 |
+
token_warmup_step: float = 0
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
@dataclass
|
| 84 |
+
class DreamBoothSubsetParams(BaseSubsetParams):
|
| 85 |
+
is_reg: bool = False
|
| 86 |
+
class_tokens: Optional[str] = None
|
| 87 |
+
caption_extension: str = ".caption"
|
| 88 |
+
cache_info: bool = False
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
@dataclass
|
| 92 |
+
class FineTuningSubsetParams(BaseSubsetParams):
|
| 93 |
+
metadata_file: Optional[str] = None
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
@dataclass
|
| 97 |
+
class ControlNetSubsetParams(BaseSubsetParams):
|
| 98 |
+
conditioning_data_dir: str = None
|
| 99 |
+
caption_extension: str = ".caption"
|
| 100 |
+
cache_info: bool = False
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
@dataclass
|
| 104 |
+
class BaseDatasetParams:
|
| 105 |
+
tokenizer: Union[CLIPTokenizer, List[CLIPTokenizer]] = None
|
| 106 |
+
max_token_length: int = None
|
| 107 |
+
resolution: Optional[Tuple[int, int]] = None
|
| 108 |
+
network_multiplier: float = 1.0
|
| 109 |
+
debug_dataset: bool = False
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
@dataclass
|
| 113 |
+
class DreamBoothDatasetParams(BaseDatasetParams):
|
| 114 |
+
batch_size: int = 1
|
| 115 |
+
enable_bucket: bool = False
|
| 116 |
+
min_bucket_reso: int = 256
|
| 117 |
+
max_bucket_reso: int = 1024
|
| 118 |
+
bucket_reso_steps: int = 64
|
| 119 |
+
bucket_no_upscale: bool = False
|
| 120 |
+
prior_loss_weight: float = 1.0
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
@dataclass
|
| 124 |
+
class FineTuningDatasetParams(BaseDatasetParams):
|
| 125 |
+
batch_size: int = 1
|
| 126 |
+
enable_bucket: bool = False
|
| 127 |
+
min_bucket_reso: int = 256
|
| 128 |
+
max_bucket_reso: int = 1024
|
| 129 |
+
bucket_reso_steps: int = 64
|
| 130 |
+
bucket_no_upscale: bool = False
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
@dataclass
|
| 134 |
+
class ControlNetDatasetParams(BaseDatasetParams):
|
| 135 |
+
batch_size: int = 1
|
| 136 |
+
enable_bucket: bool = False
|
| 137 |
+
min_bucket_reso: int = 256
|
| 138 |
+
max_bucket_reso: int = 1024
|
| 139 |
+
bucket_reso_steps: int = 64
|
| 140 |
+
bucket_no_upscale: bool = False
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
@dataclass
|
| 144 |
+
class SubsetBlueprint:
|
| 145 |
+
params: Union[DreamBoothSubsetParams, FineTuningSubsetParams]
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
@dataclass
|
| 149 |
+
class DatasetBlueprint:
|
| 150 |
+
is_dreambooth: bool
|
| 151 |
+
is_controlnet: bool
|
| 152 |
+
params: Union[DreamBoothDatasetParams, FineTuningDatasetParams]
|
| 153 |
+
subsets: Sequence[SubsetBlueprint]
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
@dataclass
|
| 157 |
+
class DatasetGroupBlueprint:
|
| 158 |
+
datasets: Sequence[DatasetBlueprint]
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
@dataclass
|
| 162 |
+
class Blueprint:
|
| 163 |
+
dataset_group: DatasetGroupBlueprint
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
class ConfigSanitizer:
|
| 167 |
+
# @curry
|
| 168 |
+
@staticmethod
|
| 169 |
+
def __validate_and_convert_twodim(klass, value: Sequence) -> Tuple:
|
| 170 |
+
Schema(ExactSequence([klass, klass]))(value)
|
| 171 |
+
return tuple(value)
|
| 172 |
+
|
| 173 |
+
# @curry
|
| 174 |
+
@staticmethod
|
| 175 |
+
def __validate_and_convert_scalar_or_twodim(klass, value: Union[float, Sequence]) -> Tuple:
|
| 176 |
+
Schema(Any(klass, ExactSequence([klass, klass])))(value)
|
| 177 |
+
try:
|
| 178 |
+
Schema(klass)(value)
|
| 179 |
+
return (value, value)
|
| 180 |
+
except:
|
| 181 |
+
return ConfigSanitizer.__validate_and_convert_twodim(klass, value)
|
| 182 |
+
|
| 183 |
+
# subset schema
|
| 184 |
+
SUBSET_ASCENDABLE_SCHEMA = {
|
| 185 |
+
"color_aug": bool,
|
| 186 |
+
"face_crop_aug_range": functools.partial(__validate_and_convert_twodim.__func__, float),
|
| 187 |
+
"flip_aug": bool,
|
| 188 |
+
"num_repeats": int,
|
| 189 |
+
"random_crop": bool,
|
| 190 |
+
"shuffle_caption": bool,
|
| 191 |
+
"keep_tokens": int,
|
| 192 |
+
"keep_tokens_separator": str,
|
| 193 |
+
"secondary_separator": str,
|
| 194 |
+
"enable_wildcard": bool,
|
| 195 |
+
"token_warmup_min": int,
|
| 196 |
+
"token_warmup_step": Any(float, int),
|
| 197 |
+
"caption_prefix": str,
|
| 198 |
+
"caption_suffix": str,
|
| 199 |
+
}
|
| 200 |
+
# DO means DropOut
|
| 201 |
+
DO_SUBSET_ASCENDABLE_SCHEMA = {
|
| 202 |
+
"caption_dropout_every_n_epochs": int,
|
| 203 |
+
"caption_dropout_rate": Any(float, int),
|
| 204 |
+
"caption_tag_dropout_rate": Any(float, int),
|
| 205 |
+
}
|
| 206 |
+
# DB means DreamBooth
|
| 207 |
+
DB_SUBSET_ASCENDABLE_SCHEMA = {
|
| 208 |
+
"caption_extension": str,
|
| 209 |
+
"class_tokens": str,
|
| 210 |
+
"cache_info": bool,
|
| 211 |
+
}
|
| 212 |
+
DB_SUBSET_DISTINCT_SCHEMA = {
|
| 213 |
+
Required("image_dir"): str,
|
| 214 |
+
"is_reg": bool,
|
| 215 |
+
}
|
| 216 |
+
# FT means FineTuning
|
| 217 |
+
FT_SUBSET_DISTINCT_SCHEMA = {
|
| 218 |
+
Required("metadata_file"): str,
|
| 219 |
+
"image_dir": str,
|
| 220 |
+
}
|
| 221 |
+
CN_SUBSET_ASCENDABLE_SCHEMA = {
|
| 222 |
+
"caption_extension": str,
|
| 223 |
+
"cache_info": bool,
|
| 224 |
+
}
|
| 225 |
+
CN_SUBSET_DISTINCT_SCHEMA = {
|
| 226 |
+
Required("image_dir"): str,
|
| 227 |
+
Required("conditioning_data_dir"): str,
|
| 228 |
+
}
|
| 229 |
+
|
| 230 |
+
# datasets schema
|
| 231 |
+
DATASET_ASCENDABLE_SCHEMA = {
|
| 232 |
+
"batch_size": int,
|
| 233 |
+
"bucket_no_upscale": bool,
|
| 234 |
+
"bucket_reso_steps": int,
|
| 235 |
+
"enable_bucket": bool,
|
| 236 |
+
"max_bucket_reso": int,
|
| 237 |
+
"min_bucket_reso": int,
|
| 238 |
+
"resolution": functools.partial(__validate_and_convert_scalar_or_twodim.__func__, int),
|
| 239 |
+
"network_multiplier": float,
|
| 240 |
+
}
|
| 241 |
+
|
| 242 |
+
# options handled by argparse but not handled by user config
|
| 243 |
+
ARGPARSE_SPECIFIC_SCHEMA = {
|
| 244 |
+
"debug_dataset": bool,
|
| 245 |
+
"max_token_length": Any(None, int),
|
| 246 |
+
"prior_loss_weight": Any(float, int),
|
| 247 |
+
}
|
| 248 |
+
# for handling default None value of argparse
|
| 249 |
+
ARGPARSE_NULLABLE_OPTNAMES = [
|
| 250 |
+
"face_crop_aug_range",
|
| 251 |
+
"resolution",
|
| 252 |
+
]
|
| 253 |
+
# prepare map because option name may differ among argparse and user config
|
| 254 |
+
ARGPARSE_OPTNAME_TO_CONFIG_OPTNAME = {
|
| 255 |
+
"train_batch_size": "batch_size",
|
| 256 |
+
"dataset_repeats": "num_repeats",
|
| 257 |
+
}
|
| 258 |
+
|
| 259 |
+
def __init__(self, support_dreambooth: bool, support_finetuning: bool, support_controlnet: bool, support_dropout: bool) -> None:
|
| 260 |
+
assert support_dreambooth or support_finetuning or support_controlnet, (
|
| 261 |
+
"Neither DreamBooth mode nor fine tuning mode nor controlnet mode specified. Please specify one mode or more."
|
| 262 |
+
+ " / DreamBooth モードか fine tuning モードか controlnet モードのどれも指定されていません。1つ以上指定してください。"
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
self.db_subset_schema = self.__merge_dict(
|
| 266 |
+
self.SUBSET_ASCENDABLE_SCHEMA,
|
| 267 |
+
self.DB_SUBSET_DISTINCT_SCHEMA,
|
| 268 |
+
self.DB_SUBSET_ASCENDABLE_SCHEMA,
|
| 269 |
+
self.DO_SUBSET_ASCENDABLE_SCHEMA if support_dropout else {},
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
self.ft_subset_schema = self.__merge_dict(
|
| 273 |
+
self.SUBSET_ASCENDABLE_SCHEMA,
|
| 274 |
+
self.FT_SUBSET_DISTINCT_SCHEMA,
|
| 275 |
+
self.DO_SUBSET_ASCENDABLE_SCHEMA if support_dropout else {},
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
self.cn_subset_schema = self.__merge_dict(
|
| 279 |
+
self.SUBSET_ASCENDABLE_SCHEMA,
|
| 280 |
+
self.CN_SUBSET_DISTINCT_SCHEMA,
|
| 281 |
+
self.CN_SUBSET_ASCENDABLE_SCHEMA,
|
| 282 |
+
self.DO_SUBSET_ASCENDABLE_SCHEMA if support_dropout else {},
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
self.db_dataset_schema = self.__merge_dict(
|
| 286 |
+
self.DATASET_ASCENDABLE_SCHEMA,
|
| 287 |
+
self.SUBSET_ASCENDABLE_SCHEMA,
|
| 288 |
+
self.DB_SUBSET_ASCENDABLE_SCHEMA,
|
| 289 |
+
self.DO_SUBSET_ASCENDABLE_SCHEMA if support_dropout else {},
|
| 290 |
+
{"subsets": [self.db_subset_schema]},
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
self.ft_dataset_schema = self.__merge_dict(
|
| 294 |
+
self.DATASET_ASCENDABLE_SCHEMA,
|
| 295 |
+
self.SUBSET_ASCENDABLE_SCHEMA,
|
| 296 |
+
self.DO_SUBSET_ASCENDABLE_SCHEMA if support_dropout else {},
|
| 297 |
+
{"subsets": [self.ft_subset_schema]},
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
self.cn_dataset_schema = self.__merge_dict(
|
| 301 |
+
self.DATASET_ASCENDABLE_SCHEMA,
|
| 302 |
+
self.SUBSET_ASCENDABLE_SCHEMA,
|
| 303 |
+
self.CN_SUBSET_ASCENDABLE_SCHEMA,
|
| 304 |
+
self.DO_SUBSET_ASCENDABLE_SCHEMA if support_dropout else {},
|
| 305 |
+
{"subsets": [self.cn_subset_schema]},
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
if support_dreambooth and support_finetuning:
|
| 309 |
+
|
| 310 |
+
def validate_flex_dataset(dataset_config: dict):
|
| 311 |
+
subsets_config = dataset_config.get("subsets", [])
|
| 312 |
+
|
| 313 |
+
if support_controlnet and all(["conditioning_data_dir" in subset for subset in subsets_config]):
|
| 314 |
+
return Schema(self.cn_dataset_schema)(dataset_config)
|
| 315 |
+
# check dataset meets FT style
|
| 316 |
+
# NOTE: all FT subsets should have "metadata_file"
|
| 317 |
+
elif all(["metadata_file" in subset for subset in subsets_config]):
|
| 318 |
+
return Schema(self.ft_dataset_schema)(dataset_config)
|
| 319 |
+
# check dataset meets DB style
|
| 320 |
+
# NOTE: all DB subsets should have no "metadata_file"
|
| 321 |
+
elif all(["metadata_file" not in subset for subset in subsets_config]):
|
| 322 |
+
return Schema(self.db_dataset_schema)(dataset_config)
|
| 323 |
+
else:
|
| 324 |
+
raise voluptuous.Invalid(
|
| 325 |
+
"DreamBooth subset and fine tuning subset cannot be mixed in the same dataset. Please split them into separate datasets. / DreamBoothのサブセットとfine tuninのサブセットを同一のデータセットに混在させることはできません。別々のデータセットに分割してください。"
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
self.dataset_schema = validate_flex_dataset
|
| 329 |
+
elif support_dreambooth:
|
| 330 |
+
if support_controlnet:
|
| 331 |
+
self.dataset_schema = self.cn_dataset_schema
|
| 332 |
+
else:
|
| 333 |
+
self.dataset_schema = self.db_dataset_schema
|
| 334 |
+
elif support_finetuning:
|
| 335 |
+
self.dataset_schema = self.ft_dataset_schema
|
| 336 |
+
elif support_controlnet:
|
| 337 |
+
self.dataset_schema = self.cn_dataset_schema
|
| 338 |
+
|
| 339 |
+
self.general_schema = self.__merge_dict(
|
| 340 |
+
self.DATASET_ASCENDABLE_SCHEMA,
|
| 341 |
+
self.SUBSET_ASCENDABLE_SCHEMA,
|
| 342 |
+
self.DB_SUBSET_ASCENDABLE_SCHEMA if support_dreambooth else {},
|
| 343 |
+
self.CN_SUBSET_ASCENDABLE_SCHEMA if support_controlnet else {},
|
| 344 |
+
self.DO_SUBSET_ASCENDABLE_SCHEMA if support_dropout else {},
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
self.user_config_validator = Schema(
|
| 348 |
+
{
|
| 349 |
+
"general": self.general_schema,
|
| 350 |
+
"datasets": [self.dataset_schema],
|
| 351 |
+
}
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
self.argparse_schema = self.__merge_dict(
|
| 355 |
+
self.general_schema,
|
| 356 |
+
self.ARGPARSE_SPECIFIC_SCHEMA,
|
| 357 |
+
{optname: Any(None, self.general_schema[optname]) for optname in self.ARGPARSE_NULLABLE_OPTNAMES},
|
| 358 |
+
{a_name: self.general_schema[c_name] for a_name, c_name in self.ARGPARSE_OPTNAME_TO_CONFIG_OPTNAME.items()},
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
self.argparse_config_validator = Schema(Object(self.argparse_schema), extra=voluptuous.ALLOW_EXTRA)
|
| 362 |
+
|
| 363 |
+
def sanitize_user_config(self, user_config: dict) -> dict:
|
| 364 |
+
try:
|
| 365 |
+
return self.user_config_validator(user_config)
|
| 366 |
+
except MultipleInvalid:
|
| 367 |
+
# TODO: エラー発生時のメッセージをわかりやすくする
|
| 368 |
+
logger.error("Invalid user config / ユーザ設定の形式が正しくないようです")
|
| 369 |
+
raise
|
| 370 |
+
|
| 371 |
+
# NOTE: In nature, argument parser result is not needed to be sanitize
|
| 372 |
+
# However this will help us to detect program bug
|
| 373 |
+
def sanitize_argparse_namespace(self, argparse_namespace: argparse.Namespace) -> argparse.Namespace:
|
| 374 |
+
try:
|
| 375 |
+
return self.argparse_config_validator(argparse_namespace)
|
| 376 |
+
except MultipleInvalid:
|
| 377 |
+
# XXX: this should be a bug
|
| 378 |
+
logger.error(
|
| 379 |
+
"Invalid cmdline parsed arguments. This should be a bug. / コマンドラインのパース結果が正しくないようです。プログラムのバグの可能性が高いです。"
|
| 380 |
+
)
|
| 381 |
+
raise
|
| 382 |
+
|
| 383 |
+
# NOTE: value would be overwritten by latter dict if there is already the same key
|
| 384 |
+
@staticmethod
|
| 385 |
+
def __merge_dict(*dict_list: dict) -> dict:
|
| 386 |
+
merged = {}
|
| 387 |
+
for schema in dict_list:
|
| 388 |
+
# merged |= schema
|
| 389 |
+
for k, v in schema.items():
|
| 390 |
+
merged[k] = v
|
| 391 |
+
return merged
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
class BlueprintGenerator:
|
| 395 |
+
BLUEPRINT_PARAM_NAME_TO_CONFIG_OPTNAME = {}
|
| 396 |
+
|
| 397 |
+
def __init__(self, sanitizer: ConfigSanitizer):
|
| 398 |
+
self.sanitizer = sanitizer
|
| 399 |
+
|
| 400 |
+
# runtime_params is for parameters which is only configurable on runtime, such as tokenizer
|
| 401 |
+
def generate(self, user_config: dict, argparse_namespace: argparse.Namespace, **runtime_params) -> Blueprint:
|
| 402 |
+
sanitized_user_config = self.sanitizer.sanitize_user_config(user_config)
|
| 403 |
+
sanitized_argparse_namespace = self.sanitizer.sanitize_argparse_namespace(argparse_namespace)
|
| 404 |
+
|
| 405 |
+
# convert argparse namespace to dict like config
|
| 406 |
+
# NOTE: it is ok to have extra entries in dict
|
| 407 |
+
optname_map = self.sanitizer.ARGPARSE_OPTNAME_TO_CONFIG_OPTNAME
|
| 408 |
+
argparse_config = {
|
| 409 |
+
optname_map.get(optname, optname): value for optname, value in vars(sanitized_argparse_namespace).items()
|
| 410 |
+
}
|
| 411 |
+
|
| 412 |
+
general_config = sanitized_user_config.get("general", {})
|
| 413 |
+
|
| 414 |
+
dataset_blueprints = []
|
| 415 |
+
for dataset_config in sanitized_user_config.get("datasets", []):
|
| 416 |
+
# NOTE: if subsets have no "metadata_file", these are DreamBooth datasets/subsets
|
| 417 |
+
subsets = dataset_config.get("subsets", [])
|
| 418 |
+
is_dreambooth = all(["metadata_file" not in subset for subset in subsets])
|
| 419 |
+
is_controlnet = all(["conditioning_data_dir" in subset for subset in subsets])
|
| 420 |
+
if is_controlnet:
|
| 421 |
+
subset_params_klass = ControlNetSubsetParams
|
| 422 |
+
dataset_params_klass = ControlNetDatasetParams
|
| 423 |
+
elif is_dreambooth:
|
| 424 |
+
subset_params_klass = DreamBoothSubsetParams
|
| 425 |
+
dataset_params_klass = DreamBoothDatasetParams
|
| 426 |
+
else:
|
| 427 |
+
subset_params_klass = FineTuningSubsetParams
|
| 428 |
+
dataset_params_klass = FineTuningDatasetParams
|
| 429 |
+
|
| 430 |
+
subset_blueprints = []
|
| 431 |
+
for subset_config in subsets:
|
| 432 |
+
params = self.generate_params_by_fallbacks(
|
| 433 |
+
subset_params_klass, [subset_config, dataset_config, general_config, argparse_config, runtime_params]
|
| 434 |
+
)
|
| 435 |
+
subset_blueprints.append(SubsetBlueprint(params))
|
| 436 |
+
|
| 437 |
+
params = self.generate_params_by_fallbacks(
|
| 438 |
+
dataset_params_klass, [dataset_config, general_config, argparse_config, runtime_params]
|
| 439 |
+
)
|
| 440 |
+
dataset_blueprints.append(DatasetBlueprint(is_dreambooth, is_controlnet, params, subset_blueprints))
|
| 441 |
+
|
| 442 |
+
dataset_group_blueprint = DatasetGroupBlueprint(dataset_blueprints)
|
| 443 |
+
|
| 444 |
+
return Blueprint(dataset_group_blueprint)
|
| 445 |
+
|
| 446 |
+
@staticmethod
|
| 447 |
+
def generate_params_by_fallbacks(param_klass, fallbacks: Sequence[dict]):
|
| 448 |
+
name_map = BlueprintGenerator.BLUEPRINT_PARAM_NAME_TO_CONFIG_OPTNAME
|
| 449 |
+
search_value = BlueprintGenerator.search_value
|
| 450 |
+
default_params = asdict(param_klass())
|
| 451 |
+
param_names = default_params.keys()
|
| 452 |
+
|
| 453 |
+
params = {name: search_value(name_map.get(name, name), fallbacks, default_params.get(name)) for name in param_names}
|
| 454 |
+
|
| 455 |
+
return param_klass(**params)
|
| 456 |
+
|
| 457 |
+
@staticmethod
|
| 458 |
+
def search_value(key: str, fallbacks: Sequence[dict], default_value=None):
|
| 459 |
+
for cand in fallbacks:
|
| 460 |
+
value = cand.get(key)
|
| 461 |
+
if value is not None:
|
| 462 |
+
return value
|
| 463 |
+
|
| 464 |
+
return default_value
|
| 465 |
+
|
| 466 |
+
|
| 467 |
+
def generate_dataset_group_by_blueprint(dataset_group_blueprint: DatasetGroupBlueprint):
|
| 468 |
+
datasets: List[Union[DreamBoothDataset, FineTuningDataset, ControlNetDataset]] = []
|
| 469 |
+
|
| 470 |
+
for dataset_blueprint in dataset_group_blueprint.datasets:
|
| 471 |
+
if dataset_blueprint.is_controlnet:
|
| 472 |
+
subset_klass = ControlNetSubset
|
| 473 |
+
dataset_klass = ControlNetDataset
|
| 474 |
+
elif dataset_blueprint.is_dreambooth:
|
| 475 |
+
subset_klass = DreamBoothSubset
|
| 476 |
+
dataset_klass = DreamBoothDataset
|
| 477 |
+
else:
|
| 478 |
+
subset_klass = FineTuningSubset
|
| 479 |
+
dataset_klass = FineTuningDataset
|
| 480 |
+
|
| 481 |
+
subsets = [subset_klass(**asdict(subset_blueprint.params)) for subset_blueprint in dataset_blueprint.subsets]
|
| 482 |
+
dataset = dataset_klass(subsets=subsets, **asdict(dataset_blueprint.params))
|
| 483 |
+
datasets.append(dataset)
|
| 484 |
+
|
| 485 |
+
# print info
|
| 486 |
+
info = ""
|
| 487 |
+
for i, dataset in enumerate(datasets):
|
| 488 |
+
is_dreambooth = isinstance(dataset, DreamBoothDataset)
|
| 489 |
+
is_controlnet = isinstance(dataset, ControlNetDataset)
|
| 490 |
+
info += dedent(
|
| 491 |
+
f"""\
|
| 492 |
+
[Dataset {i}]
|
| 493 |
+
batch_size: {dataset.batch_size}
|
| 494 |
+
resolution: {(dataset.width, dataset.height)}
|
| 495 |
+
enable_bucket: {dataset.enable_bucket}
|
| 496 |
+
network_multiplier: {dataset.network_multiplier}
|
| 497 |
+
"""
|
| 498 |
+
)
|
| 499 |
+
|
| 500 |
+
if dataset.enable_bucket:
|
| 501 |
+
info += indent(
|
| 502 |
+
dedent(
|
| 503 |
+
f"""\
|
| 504 |
+
min_bucket_reso: {dataset.min_bucket_reso}
|
| 505 |
+
max_bucket_reso: {dataset.max_bucket_reso}
|
| 506 |
+
bucket_reso_steps: {dataset.bucket_reso_steps}
|
| 507 |
+
bucket_no_upscale: {dataset.bucket_no_upscale}
|
| 508 |
+
\n"""
|
| 509 |
+
),
|
| 510 |
+
" ",
|
| 511 |
+
)
|
| 512 |
+
else:
|
| 513 |
+
info += "\n"
|
| 514 |
+
|
| 515 |
+
for j, subset in enumerate(dataset.subsets):
|
| 516 |
+
info += indent(
|
| 517 |
+
dedent(
|
| 518 |
+
f"""\
|
| 519 |
+
[Subset {j} of Dataset {i}]
|
| 520 |
+
image_dir: "{subset.image_dir}"
|
| 521 |
+
image_count: {subset.img_count}
|
| 522 |
+
num_repeats: {subset.num_repeats}
|
| 523 |
+
shuffle_caption: {subset.shuffle_caption}
|
| 524 |
+
keep_tokens: {subset.keep_tokens}
|
| 525 |
+
keep_tokens_separator: {subset.keep_tokens_separator}
|
| 526 |
+
secondary_separator: {subset.secondary_separator}
|
| 527 |
+
enable_wildcard: {subset.enable_wildcard}
|
| 528 |
+
caption_dropout_rate: {subset.caption_dropout_rate}
|
| 529 |
+
caption_dropout_every_n_epoches: {subset.caption_dropout_every_n_epochs}
|
| 530 |
+
caption_tag_dropout_rate: {subset.caption_tag_dropout_rate}
|
| 531 |
+
caption_prefix: {subset.caption_prefix}
|
| 532 |
+
caption_suffix: {subset.caption_suffix}
|
| 533 |
+
color_aug: {subset.color_aug}
|
| 534 |
+
flip_aug: {subset.flip_aug}
|
| 535 |
+
face_crop_aug_range: {subset.face_crop_aug_range}
|
| 536 |
+
random_crop: {subset.random_crop}
|
| 537 |
+
token_warmup_min: {subset.token_warmup_min},
|
| 538 |
+
token_warmup_step: {subset.token_warmup_step},
|
| 539 |
+
"""
|
| 540 |
+
),
|
| 541 |
+
" ",
|
| 542 |
+
)
|
| 543 |
+
|
| 544 |
+
if is_dreambooth:
|
| 545 |
+
info += indent(
|
| 546 |
+
dedent(
|
| 547 |
+
f"""\
|
| 548 |
+
is_reg: {subset.is_reg}
|
| 549 |
+
class_tokens: {subset.class_tokens}
|
| 550 |
+
caption_extension: {subset.caption_extension}
|
| 551 |
+
\n"""
|
| 552 |
+
),
|
| 553 |
+
" ",
|
| 554 |
+
)
|
| 555 |
+
elif not is_controlnet:
|
| 556 |
+
info += indent(
|
| 557 |
+
dedent(
|
| 558 |
+
f"""\
|
| 559 |
+
metadata_file: {subset.metadata_file}
|
| 560 |
+
\n"""
|
| 561 |
+
),
|
| 562 |
+
" ",
|
| 563 |
+
)
|
| 564 |
+
|
| 565 |
+
logger.info(f"{info}")
|
| 566 |
+
|
| 567 |
+
# make buckets first because it determines the length of dataset
|
| 568 |
+
# and set the same seed for all datasets
|
| 569 |
+
seed = random.randint(0, 2**31) # actual seed is seed + epoch_no
|
| 570 |
+
for i, dataset in enumerate(datasets):
|
| 571 |
+
logger.info(f"[Dataset {i}]")
|
| 572 |
+
dataset.make_buckets()
|
| 573 |
+
dataset.set_seed(seed)
|
| 574 |
+
|
| 575 |
+
return DatasetGroup(datasets)
|
| 576 |
+
|
| 577 |
+
|
| 578 |
+
def generate_dreambooth_subsets_config_by_subdirs(train_data_dir: Optional[str] = None, reg_data_dir: Optional[str] = None):
|
| 579 |
+
def extract_dreambooth_params(name: str) -> Tuple[int, str]:
|
| 580 |
+
tokens = name.split("_")
|
| 581 |
+
try:
|
| 582 |
+
n_repeats = int(tokens[0])
|
| 583 |
+
except ValueError as e:
|
| 584 |
+
logger.warning(f"ignore directory without repeats / 繰り返し回数のないディレクトリを無視します: {name}")
|
| 585 |
+
return 0, ""
|
| 586 |
+
caption_by_folder = "_".join(tokens[1:])
|
| 587 |
+
return n_repeats, caption_by_folder
|
| 588 |
+
|
| 589 |
+
def generate(base_dir: Optional[str], is_reg: bool):
|
| 590 |
+
if base_dir is None:
|
| 591 |
+
return []
|
| 592 |
+
|
| 593 |
+
base_dir: Path = Path(base_dir)
|
| 594 |
+
if not base_dir.is_dir():
|
| 595 |
+
return []
|
| 596 |
+
|
| 597 |
+
subsets_config = []
|
| 598 |
+
for subdir in base_dir.iterdir():
|
| 599 |
+
if not subdir.is_dir():
|
| 600 |
+
continue
|
| 601 |
+
|
| 602 |
+
num_repeats, class_tokens = extract_dreambooth_params(subdir.name)
|
| 603 |
+
if num_repeats < 1:
|
| 604 |
+
continue
|
| 605 |
+
|
| 606 |
+
subset_config = {"image_dir": str(subdir), "num_repeats": num_repeats, "is_reg": is_reg, "class_tokens": class_tokens}
|
| 607 |
+
subsets_config.append(subset_config)
|
| 608 |
+
|
| 609 |
+
return subsets_config
|
| 610 |
+
|
| 611 |
+
subsets_config = []
|
| 612 |
+
subsets_config += generate(train_data_dir, False)
|
| 613 |
+
subsets_config += generate(reg_data_dir, True)
|
| 614 |
+
|
| 615 |
+
return subsets_config
|
| 616 |
+
|
| 617 |
+
|
| 618 |
+
def generate_controlnet_subsets_config_by_subdirs(
|
| 619 |
+
train_data_dir: Optional[str] = None, conditioning_data_dir: Optional[str] = None, caption_extension: str = ".txt"
|
| 620 |
+
):
|
| 621 |
+
def generate(base_dir: Optional[str]):
|
| 622 |
+
if base_dir is None:
|
| 623 |
+
return []
|
| 624 |
+
|
| 625 |
+
base_dir: Path = Path(base_dir)
|
| 626 |
+
if not base_dir.is_dir():
|
| 627 |
+
return []
|
| 628 |
+
|
| 629 |
+
subsets_config = []
|
| 630 |
+
subset_config = {
|
| 631 |
+
"image_dir": train_data_dir,
|
| 632 |
+
"conditioning_data_dir": conditioning_data_dir,
|
| 633 |
+
"caption_extension": caption_extension,
|
| 634 |
+
"num_repeats": 1,
|
| 635 |
+
}
|
| 636 |
+
subsets_config.append(subset_config)
|
| 637 |
+
|
| 638 |
+
return subsets_config
|
| 639 |
+
|
| 640 |
+
subsets_config = []
|
| 641 |
+
subsets_config += generate(train_data_dir)
|
| 642 |
+
|
| 643 |
+
return subsets_config
|
| 644 |
+
|
| 645 |
+
|
| 646 |
+
def load_user_config(file: str) -> dict:
|
| 647 |
+
file: Path = Path(file)
|
| 648 |
+
if not file.is_file():
|
| 649 |
+
raise ValueError(f"file not found / ファイルが見つかりません: {file}")
|
| 650 |
+
|
| 651 |
+
if file.name.lower().endswith(".json"):
|
| 652 |
+
try:
|
| 653 |
+
with open(file, "r") as f:
|
| 654 |
+
config = json.load(f)
|
| 655 |
+
except Exception:
|
| 656 |
+
logger.error(
|
| 657 |
+
f"Error on parsing JSON config file. Please check the format. / JSON 形式の設定ファイルの読み込みに失敗しました。文法が正しいか確認してください。: {file}"
|
| 658 |
+
)
|
| 659 |
+
raise
|
| 660 |
+
elif file.name.lower().endswith(".toml"):
|
| 661 |
+
try:
|
| 662 |
+
config = toml.load(file)
|
| 663 |
+
except Exception:
|
| 664 |
+
logger.error(
|
| 665 |
+
f"Error on parsing TOML config file. Please check the format. / TOML 形式の設定ファイルの読み込みに失敗しました。文法が正しいか確認してください。: {file}"
|
| 666 |
+
)
|
| 667 |
+
raise
|
| 668 |
+
else:
|
| 669 |
+
raise ValueError(f"not supported config file format / 対応していない設定ファイルの形式です: {file}")
|
| 670 |
+
|
| 671 |
+
return config
|
| 672 |
+
|
| 673 |
+
|
| 674 |
+
# for config test
|
| 675 |
+
if __name__ == "__main__":
|
| 676 |
+
parser = argparse.ArgumentParser()
|
| 677 |
+
parser.add_argument("--support_dreambooth", action="store_true")
|
| 678 |
+
parser.add_argument("--support_finetuning", action="store_true")
|
| 679 |
+
parser.add_argument("--support_controlnet", action="store_true")
|
| 680 |
+
parser.add_argument("--support_dropout", action="store_true")
|
| 681 |
+
parser.add_argument("dataset_config")
|
| 682 |
+
config_args, remain = parser.parse_known_args()
|
| 683 |
+
|
| 684 |
+
parser = argparse.ArgumentParser()
|
| 685 |
+
train_util.add_dataset_arguments(
|
| 686 |
+
parser, config_args.support_dreambooth, config_args.support_finetuning, config_args.support_dropout
|
| 687 |
+
)
|
| 688 |
+
train_util.add_training_arguments(parser, config_args.support_dreambooth)
|
| 689 |
+
argparse_namespace = parser.parse_args(remain)
|
| 690 |
+
train_util.prepare_dataset_args(argparse_namespace, config_args.support_finetuning)
|
| 691 |
+
|
| 692 |
+
logger.info("[argparse_namespace]")
|
| 693 |
+
logger.info(f"{vars(argparse_namespace)}")
|
| 694 |
+
|
| 695 |
+
user_config = load_user_config(config_args.dataset_config)
|
| 696 |
+
|
| 697 |
+
logger.info("")
|
| 698 |
+
logger.info("[user_config]")
|
| 699 |
+
logger.info(f"{user_config}")
|
| 700 |
+
|
| 701 |
+
sanitizer = ConfigSanitizer(
|
| 702 |
+
config_args.support_dreambooth, config_args.support_finetuning, config_args.support_controlnet, config_args.support_dropout
|
| 703 |
+
)
|
| 704 |
+
sanitized_user_config = sanitizer.sanitize_user_config(user_config)
|
| 705 |
+
|
| 706 |
+
logger.info("")
|
| 707 |
+
logger.info("[sanitized_user_config]")
|
| 708 |
+
logger.info(f"{sanitized_user_config}")
|
| 709 |
+
|
| 710 |
+
blueprint = BlueprintGenerator(sanitizer).generate(user_config, argparse_namespace)
|
| 711 |
+
|
| 712 |
+
logger.info("")
|
| 713 |
+
logger.info("[blueprint]")
|
| 714 |
+
logger.info(f"{blueprint}")
|