Upload lora-scripts/sd-scripts/networks/merge_lora_old.py with huggingface_hub
Browse files
lora-scripts/sd-scripts/networks/merge_lora_old.py
ADDED
|
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
import argparse
|
| 4 |
+
import os
|
| 5 |
+
import torch
|
| 6 |
+
from safetensors.torch import load_file, save_file
|
| 7 |
+
import library.model_util as model_util
|
| 8 |
+
import lora
|
| 9 |
+
from library.utils import setup_logging
|
| 10 |
+
setup_logging()
|
| 11 |
+
import logging
|
| 12 |
+
logger = logging.getLogger(__name__)
|
| 13 |
+
|
| 14 |
+
def load_state_dict(file_name, dtype):
|
| 15 |
+
if os.path.splitext(file_name)[1] == '.safetensors':
|
| 16 |
+
sd = load_file(file_name)
|
| 17 |
+
else:
|
| 18 |
+
sd = torch.load(file_name, map_location='cpu')
|
| 19 |
+
for key in list(sd.keys()):
|
| 20 |
+
if type(sd[key]) == torch.Tensor:
|
| 21 |
+
sd[key] = sd[key].to(dtype)
|
| 22 |
+
return sd
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def save_to_file(file_name, model, state_dict, dtype):
|
| 26 |
+
if dtype is not None:
|
| 27 |
+
for key in list(state_dict.keys()):
|
| 28 |
+
if type(state_dict[key]) == torch.Tensor:
|
| 29 |
+
state_dict[key] = state_dict[key].to(dtype)
|
| 30 |
+
|
| 31 |
+
if os.path.splitext(file_name)[1] == '.safetensors':
|
| 32 |
+
save_file(model, file_name)
|
| 33 |
+
else:
|
| 34 |
+
torch.save(model, file_name)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def merge_to_sd_model(text_encoder, unet, models, ratios, merge_dtype):
|
| 38 |
+
text_encoder.to(merge_dtype)
|
| 39 |
+
unet.to(merge_dtype)
|
| 40 |
+
|
| 41 |
+
# create module map
|
| 42 |
+
name_to_module = {}
|
| 43 |
+
for i, root_module in enumerate([text_encoder, unet]):
|
| 44 |
+
if i == 0:
|
| 45 |
+
prefix = lora.LoRANetwork.LORA_PREFIX_TEXT_ENCODER
|
| 46 |
+
target_replace_modules = lora.LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE
|
| 47 |
+
else:
|
| 48 |
+
prefix = lora.LoRANetwork.LORA_PREFIX_UNET
|
| 49 |
+
target_replace_modules = lora.LoRANetwork.UNET_TARGET_REPLACE_MODULE
|
| 50 |
+
|
| 51 |
+
for name, module in root_module.named_modules():
|
| 52 |
+
if module.__class__.__name__ in target_replace_modules:
|
| 53 |
+
for child_name, child_module in module.named_modules():
|
| 54 |
+
if child_module.__class__.__name__ == "Linear" or (child_module.__class__.__name__ == "Conv2d" and child_module.kernel_size == (1, 1)):
|
| 55 |
+
lora_name = prefix + '.' + name + '.' + child_name
|
| 56 |
+
lora_name = lora_name.replace('.', '_')
|
| 57 |
+
name_to_module[lora_name] = child_module
|
| 58 |
+
|
| 59 |
+
for model, ratio in zip(models, ratios):
|
| 60 |
+
logger.info(f"loading: {model}")
|
| 61 |
+
lora_sd = load_state_dict(model, merge_dtype)
|
| 62 |
+
|
| 63 |
+
logger.info(f"merging...")
|
| 64 |
+
for key in lora_sd.keys():
|
| 65 |
+
if "lora_down" in key:
|
| 66 |
+
up_key = key.replace("lora_down", "lora_up")
|
| 67 |
+
alpha_key = key[:key.index("lora_down")] + 'alpha'
|
| 68 |
+
|
| 69 |
+
# find original module for this lora
|
| 70 |
+
module_name = '.'.join(key.split('.')[:-2]) # remove trailing ".lora_down.weight"
|
| 71 |
+
if module_name not in name_to_module:
|
| 72 |
+
logger.info(f"no module found for LoRA weight: {key}")
|
| 73 |
+
continue
|
| 74 |
+
module = name_to_module[module_name]
|
| 75 |
+
# logger.info(f"apply {key} to {module}")
|
| 76 |
+
|
| 77 |
+
down_weight = lora_sd[key]
|
| 78 |
+
up_weight = lora_sd[up_key]
|
| 79 |
+
|
| 80 |
+
dim = down_weight.size()[0]
|
| 81 |
+
alpha = lora_sd.get(alpha_key, dim)
|
| 82 |
+
scale = alpha / dim
|
| 83 |
+
|
| 84 |
+
# W <- W + U * D
|
| 85 |
+
weight = module.weight
|
| 86 |
+
if len(weight.size()) == 2:
|
| 87 |
+
# linear
|
| 88 |
+
weight = weight + ratio * (up_weight @ down_weight) * scale
|
| 89 |
+
else:
|
| 90 |
+
# conv2d
|
| 91 |
+
weight = weight + ratio * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) * scale
|
| 92 |
+
|
| 93 |
+
module.weight = torch.nn.Parameter(weight)
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def merge_lora_models(models, ratios, merge_dtype):
|
| 97 |
+
merged_sd = {}
|
| 98 |
+
|
| 99 |
+
alpha = None
|
| 100 |
+
dim = None
|
| 101 |
+
for model, ratio in zip(models, ratios):
|
| 102 |
+
logger.info(f"loading: {model}")
|
| 103 |
+
lora_sd = load_state_dict(model, merge_dtype)
|
| 104 |
+
|
| 105 |
+
logger.info(f"merging...")
|
| 106 |
+
for key in lora_sd.keys():
|
| 107 |
+
if 'alpha' in key:
|
| 108 |
+
if key in merged_sd:
|
| 109 |
+
assert merged_sd[key] == lora_sd[key], f"alpha mismatch / alphaが異なる場合、現時点ではマージできません"
|
| 110 |
+
else:
|
| 111 |
+
alpha = lora_sd[key].detach().numpy()
|
| 112 |
+
merged_sd[key] = lora_sd[key]
|
| 113 |
+
else:
|
| 114 |
+
if key in merged_sd:
|
| 115 |
+
assert merged_sd[key].size() == lora_sd[key].size(
|
| 116 |
+
), f"weights shape mismatch merging v1 and v2, different dims? / 重みのサイズが合いません。v1とv2、または次元数の異なるモデルはマージできません"
|
| 117 |
+
merged_sd[key] = merged_sd[key] + lora_sd[key] * ratio
|
| 118 |
+
else:
|
| 119 |
+
if "lora_down" in key:
|
| 120 |
+
dim = lora_sd[key].size()[0]
|
| 121 |
+
merged_sd[key] = lora_sd[key] * ratio
|
| 122 |
+
|
| 123 |
+
logger.info(f"dim (rank): {dim}, alpha: {alpha}")
|
| 124 |
+
if alpha is None:
|
| 125 |
+
alpha = dim
|
| 126 |
+
|
| 127 |
+
return merged_sd, dim, alpha
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def merge(args):
|
| 131 |
+
assert len(args.models) == len(args.ratios), f"number of models must be equal to number of ratios / モデルの数と重みの数は合わせてください"
|
| 132 |
+
|
| 133 |
+
def str_to_dtype(p):
|
| 134 |
+
if p == 'float':
|
| 135 |
+
return torch.float
|
| 136 |
+
if p == 'fp16':
|
| 137 |
+
return torch.float16
|
| 138 |
+
if p == 'bf16':
|
| 139 |
+
return torch.bfloat16
|
| 140 |
+
return None
|
| 141 |
+
|
| 142 |
+
merge_dtype = str_to_dtype(args.precision)
|
| 143 |
+
save_dtype = str_to_dtype(args.save_precision)
|
| 144 |
+
if save_dtype is None:
|
| 145 |
+
save_dtype = merge_dtype
|
| 146 |
+
|
| 147 |
+
if args.sd_model is not None:
|
| 148 |
+
logger.info(f"loading SD model: {args.sd_model}")
|
| 149 |
+
|
| 150 |
+
text_encoder, vae, unet = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.sd_model)
|
| 151 |
+
|
| 152 |
+
merge_to_sd_model(text_encoder, unet, args.models, args.ratios, merge_dtype)
|
| 153 |
+
|
| 154 |
+
logger.info("")
|
| 155 |
+
logger.info(f"saving SD model to: {args.save_to}")
|
| 156 |
+
model_util.save_stable_diffusion_checkpoint(args.v2, args.save_to, text_encoder, unet,
|
| 157 |
+
args.sd_model, 0, 0, save_dtype, vae)
|
| 158 |
+
else:
|
| 159 |
+
state_dict, _, _ = merge_lora_models(args.models, args.ratios, merge_dtype)
|
| 160 |
+
|
| 161 |
+
logger.info(f"")
|
| 162 |
+
logger.info(f"saving model to: {args.save_to}")
|
| 163 |
+
save_to_file(args.save_to, state_dict, state_dict, save_dtype)
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
def setup_parser() -> argparse.ArgumentParser:
|
| 167 |
+
parser = argparse.ArgumentParser()
|
| 168 |
+
parser.add_argument("--v2", action='store_true',
|
| 169 |
+
help='load Stable Diffusion v2.x model / Stable Diffusion 2.xのモデルを読み込む')
|
| 170 |
+
parser.add_argument("--save_precision", type=str, default=None,
|
| 171 |
+
choices=[None, "float", "fp16", "bf16"], help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はマージ時の精度と同じ")
|
| 172 |
+
parser.add_argument("--precision", type=str, default="float",
|
| 173 |
+
choices=["float", "fp16", "bf16"], help="precision in merging (float is recommended) / マージの計算時の精度(floatを推奨)")
|
| 174 |
+
parser.add_argument("--sd_model", type=str, default=None,
|
| 175 |
+
help="Stable Diffusion model to load: ckpt or safetensors file, merge LoRA models if omitted / 読み込むモデル、ckptまたはsafetensors。省略時はLoRAモデル同士をマージする")
|
| 176 |
+
parser.add_argument("--save_to", type=str, default=None,
|
| 177 |
+
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors")
|
| 178 |
+
parser.add_argument("--models", type=str, nargs='*',
|
| 179 |
+
help="LoRA models to merge: ckpt or safetensors file / マージするLoRAモデル、ckptまたはsafetensors")
|
| 180 |
+
parser.add_argument("--ratios", type=float, nargs='*',
|
| 181 |
+
help="ratios for each model / それぞれのLoRAモデルの比率")
|
| 182 |
+
|
| 183 |
+
return parser
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
if __name__ == '__main__':
|
| 187 |
+
parser = setup_parser()
|
| 188 |
+
|
| 189 |
+
args = parser.parse_args()
|
| 190 |
+
merge(args)
|