Upload lora-scripts/sd-scripts/library/sdxl_original_unet.py with huggingface_hub
Browse files
lora-scripts/sd-scripts/library/sdxl_original_unet.py
ADDED
|
@@ -0,0 +1,1286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Diffusersのコードをベースとした sd_xl_baseのU-Net
|
| 2 |
+
# state dictの形式をSDXLに合わせてある
|
| 3 |
+
|
| 4 |
+
"""
|
| 5 |
+
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
|
| 6 |
+
params:
|
| 7 |
+
adm_in_channels: 2816
|
| 8 |
+
num_classes: sequential
|
| 9 |
+
use_checkpoint: True
|
| 10 |
+
in_channels: 4
|
| 11 |
+
out_channels: 4
|
| 12 |
+
model_channels: 320
|
| 13 |
+
attention_resolutions: [4, 2]
|
| 14 |
+
num_res_blocks: 2
|
| 15 |
+
channel_mult: [1, 2, 4]
|
| 16 |
+
num_head_channels: 64
|
| 17 |
+
use_spatial_transformer: True
|
| 18 |
+
use_linear_in_transformer: True
|
| 19 |
+
transformer_depth: [1, 2, 10] # note: the first is unused (due to attn_res starting at 2) 32, 16, 8 --> 64, 32, 16
|
| 20 |
+
context_dim: 2048
|
| 21 |
+
spatial_transformer_attn_type: softmax-xformers
|
| 22 |
+
legacy: False
|
| 23 |
+
"""
|
| 24 |
+
|
| 25 |
+
import math
|
| 26 |
+
from types import SimpleNamespace
|
| 27 |
+
from typing import Any, Optional
|
| 28 |
+
import torch
|
| 29 |
+
import torch.utils.checkpoint
|
| 30 |
+
from torch import nn
|
| 31 |
+
from torch.nn import functional as F
|
| 32 |
+
from einops import rearrange
|
| 33 |
+
from .utils import setup_logging
|
| 34 |
+
|
| 35 |
+
setup_logging()
|
| 36 |
+
import logging
|
| 37 |
+
|
| 38 |
+
logger = logging.getLogger(__name__)
|
| 39 |
+
|
| 40 |
+
IN_CHANNELS: int = 4
|
| 41 |
+
OUT_CHANNELS: int = 4
|
| 42 |
+
ADM_IN_CHANNELS: int = 2816
|
| 43 |
+
CONTEXT_DIM: int = 2048
|
| 44 |
+
MODEL_CHANNELS: int = 320
|
| 45 |
+
TIME_EMBED_DIM = 320 * 4
|
| 46 |
+
|
| 47 |
+
USE_REENTRANT = True
|
| 48 |
+
|
| 49 |
+
# region memory efficient attention
|
| 50 |
+
|
| 51 |
+
# FlashAttentionを使うCrossAttention
|
| 52 |
+
# based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/memory_efficient_attention_pytorch/flash_attention.py
|
| 53 |
+
# LICENSE MIT https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE
|
| 54 |
+
|
| 55 |
+
# constants
|
| 56 |
+
|
| 57 |
+
EPSILON = 1e-6
|
| 58 |
+
|
| 59 |
+
# helper functions
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def exists(val):
|
| 63 |
+
return val is not None
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def default(val, d):
|
| 67 |
+
return val if exists(val) else d
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
# flash attention forwards and backwards
|
| 71 |
+
|
| 72 |
+
# https://arxiv.org/abs/2205.14135
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
class FlashAttentionFunction(torch.autograd.Function):
|
| 76 |
+
@staticmethod
|
| 77 |
+
@torch.no_grad()
|
| 78 |
+
def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
|
| 79 |
+
"""Algorithm 2 in the paper"""
|
| 80 |
+
|
| 81 |
+
device = q.device
|
| 82 |
+
dtype = q.dtype
|
| 83 |
+
max_neg_value = -torch.finfo(q.dtype).max
|
| 84 |
+
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
|
| 85 |
+
|
| 86 |
+
o = torch.zeros_like(q)
|
| 87 |
+
all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device)
|
| 88 |
+
all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device)
|
| 89 |
+
|
| 90 |
+
scale = q.shape[-1] ** -0.5
|
| 91 |
+
|
| 92 |
+
if not exists(mask):
|
| 93 |
+
mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size)
|
| 94 |
+
else:
|
| 95 |
+
mask = rearrange(mask, "b n -> b 1 1 n")
|
| 96 |
+
mask = mask.split(q_bucket_size, dim=-1)
|
| 97 |
+
|
| 98 |
+
row_splits = zip(
|
| 99 |
+
q.split(q_bucket_size, dim=-2),
|
| 100 |
+
o.split(q_bucket_size, dim=-2),
|
| 101 |
+
mask,
|
| 102 |
+
all_row_sums.split(q_bucket_size, dim=-2),
|
| 103 |
+
all_row_maxes.split(q_bucket_size, dim=-2),
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
|
| 107 |
+
q_start_index = ind * q_bucket_size - qk_len_diff
|
| 108 |
+
|
| 109 |
+
col_splits = zip(
|
| 110 |
+
k.split(k_bucket_size, dim=-2),
|
| 111 |
+
v.split(k_bucket_size, dim=-2),
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
for k_ind, (kc, vc) in enumerate(col_splits):
|
| 115 |
+
k_start_index = k_ind * k_bucket_size
|
| 116 |
+
|
| 117 |
+
attn_weights = torch.einsum("... i d, ... j d -> ... i j", qc, kc) * scale
|
| 118 |
+
|
| 119 |
+
if exists(row_mask):
|
| 120 |
+
attn_weights.masked_fill_(~row_mask, max_neg_value)
|
| 121 |
+
|
| 122 |
+
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
|
| 123 |
+
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device).triu(
|
| 124 |
+
q_start_index - k_start_index + 1
|
| 125 |
+
)
|
| 126 |
+
attn_weights.masked_fill_(causal_mask, max_neg_value)
|
| 127 |
+
|
| 128 |
+
block_row_maxes = attn_weights.amax(dim=-1, keepdims=True)
|
| 129 |
+
attn_weights -= block_row_maxes
|
| 130 |
+
exp_weights = torch.exp(attn_weights)
|
| 131 |
+
|
| 132 |
+
if exists(row_mask):
|
| 133 |
+
exp_weights.masked_fill_(~row_mask, 0.0)
|
| 134 |
+
|
| 135 |
+
block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(min=EPSILON)
|
| 136 |
+
|
| 137 |
+
new_row_maxes = torch.maximum(block_row_maxes, row_maxes)
|
| 138 |
+
|
| 139 |
+
exp_values = torch.einsum("... i j, ... j d -> ... i d", exp_weights, vc)
|
| 140 |
+
|
| 141 |
+
exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
|
| 142 |
+
exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes)
|
| 143 |
+
|
| 144 |
+
new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums
|
| 145 |
+
|
| 146 |
+
oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values)
|
| 147 |
+
|
| 148 |
+
row_maxes.copy_(new_row_maxes)
|
| 149 |
+
row_sums.copy_(new_row_sums)
|
| 150 |
+
|
| 151 |
+
ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size)
|
| 152 |
+
ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes)
|
| 153 |
+
|
| 154 |
+
return o
|
| 155 |
+
|
| 156 |
+
@staticmethod
|
| 157 |
+
@torch.no_grad()
|
| 158 |
+
def backward(ctx, do):
|
| 159 |
+
"""Algorithm 4 in the paper"""
|
| 160 |
+
|
| 161 |
+
causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
|
| 162 |
+
q, k, v, o, l, m = ctx.saved_tensors
|
| 163 |
+
|
| 164 |
+
device = q.device
|
| 165 |
+
|
| 166 |
+
max_neg_value = -torch.finfo(q.dtype).max
|
| 167 |
+
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
|
| 168 |
+
|
| 169 |
+
dq = torch.zeros_like(q)
|
| 170 |
+
dk = torch.zeros_like(k)
|
| 171 |
+
dv = torch.zeros_like(v)
|
| 172 |
+
|
| 173 |
+
row_splits = zip(
|
| 174 |
+
q.split(q_bucket_size, dim=-2),
|
| 175 |
+
o.split(q_bucket_size, dim=-2),
|
| 176 |
+
do.split(q_bucket_size, dim=-2),
|
| 177 |
+
mask,
|
| 178 |
+
l.split(q_bucket_size, dim=-2),
|
| 179 |
+
m.split(q_bucket_size, dim=-2),
|
| 180 |
+
dq.split(q_bucket_size, dim=-2),
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits):
|
| 184 |
+
q_start_index = ind * q_bucket_size - qk_len_diff
|
| 185 |
+
|
| 186 |
+
col_splits = zip(
|
| 187 |
+
k.split(k_bucket_size, dim=-2),
|
| 188 |
+
v.split(k_bucket_size, dim=-2),
|
| 189 |
+
dk.split(k_bucket_size, dim=-2),
|
| 190 |
+
dv.split(k_bucket_size, dim=-2),
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits):
|
| 194 |
+
k_start_index = k_ind * k_bucket_size
|
| 195 |
+
|
| 196 |
+
attn_weights = torch.einsum("... i d, ... j d -> ... i j", qc, kc) * scale
|
| 197 |
+
|
| 198 |
+
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
|
| 199 |
+
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device).triu(
|
| 200 |
+
q_start_index - k_start_index + 1
|
| 201 |
+
)
|
| 202 |
+
attn_weights.masked_fill_(causal_mask, max_neg_value)
|
| 203 |
+
|
| 204 |
+
exp_attn_weights = torch.exp(attn_weights - mc)
|
| 205 |
+
|
| 206 |
+
if exists(row_mask):
|
| 207 |
+
exp_attn_weights.masked_fill_(~row_mask, 0.0)
|
| 208 |
+
|
| 209 |
+
p = exp_attn_weights / lc
|
| 210 |
+
|
| 211 |
+
dv_chunk = torch.einsum("... i j, ... i d -> ... j d", p, doc)
|
| 212 |
+
dp = torch.einsum("... i d, ... j d -> ... i j", doc, vc)
|
| 213 |
+
|
| 214 |
+
D = (doc * oc).sum(dim=-1, keepdims=True)
|
| 215 |
+
ds = p * scale * (dp - D)
|
| 216 |
+
|
| 217 |
+
dq_chunk = torch.einsum("... i j, ... j d -> ... i d", ds, kc)
|
| 218 |
+
dk_chunk = torch.einsum("... i j, ... i d -> ... j d", ds, qc)
|
| 219 |
+
|
| 220 |
+
dqc.add_(dq_chunk)
|
| 221 |
+
dkc.add_(dk_chunk)
|
| 222 |
+
dvc.add_(dv_chunk)
|
| 223 |
+
|
| 224 |
+
return dq, dk, dv, None, None, None, None
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
# endregion
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
def get_parameter_dtype(parameter: torch.nn.Module):
|
| 231 |
+
return next(parameter.parameters()).dtype
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
def get_parameter_device(parameter: torch.nn.Module):
|
| 235 |
+
return next(parameter.parameters()).device
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
def get_timestep_embedding(
|
| 239 |
+
timesteps: torch.Tensor,
|
| 240 |
+
embedding_dim: int,
|
| 241 |
+
downscale_freq_shift: float = 1,
|
| 242 |
+
scale: float = 1,
|
| 243 |
+
max_period: int = 10000,
|
| 244 |
+
):
|
| 245 |
+
"""
|
| 246 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
|
| 247 |
+
|
| 248 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
| 249 |
+
These may be fractional.
|
| 250 |
+
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
|
| 251 |
+
embeddings. :return: an [N x dim] Tensor of positional embeddings.
|
| 252 |
+
"""
|
| 253 |
+
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
|
| 254 |
+
|
| 255 |
+
half_dim = embedding_dim // 2
|
| 256 |
+
exponent = -math.log(max_period) * torch.arange(start=0, end=half_dim, dtype=torch.float32, device=timesteps.device)
|
| 257 |
+
exponent = exponent / (half_dim - downscale_freq_shift)
|
| 258 |
+
|
| 259 |
+
emb = torch.exp(exponent)
|
| 260 |
+
emb = timesteps[:, None].float() * emb[None, :]
|
| 261 |
+
|
| 262 |
+
# scale embeddings
|
| 263 |
+
emb = scale * emb
|
| 264 |
+
|
| 265 |
+
# concat sine and cosine embeddings: flipped from Diffusers original ver because always flip_sin_to_cos=True
|
| 266 |
+
emb = torch.cat([torch.cos(emb), torch.sin(emb)], dim=-1)
|
| 267 |
+
|
| 268 |
+
# zero pad
|
| 269 |
+
if embedding_dim % 2 == 1:
|
| 270 |
+
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
|
| 271 |
+
return emb
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
# Deep Shrink: We do not common this function, because minimize dependencies.
|
| 275 |
+
def resize_like(x, target, mode="bicubic", align_corners=False):
|
| 276 |
+
org_dtype = x.dtype
|
| 277 |
+
if org_dtype == torch.bfloat16:
|
| 278 |
+
x = x.to(torch.float32)
|
| 279 |
+
|
| 280 |
+
if x.shape[-2:] != target.shape[-2:]:
|
| 281 |
+
if mode == "nearest":
|
| 282 |
+
x = F.interpolate(x, size=target.shape[-2:], mode=mode)
|
| 283 |
+
else:
|
| 284 |
+
x = F.interpolate(x, size=target.shape[-2:], mode=mode, align_corners=align_corners)
|
| 285 |
+
|
| 286 |
+
if org_dtype == torch.bfloat16:
|
| 287 |
+
x = x.to(org_dtype)
|
| 288 |
+
return x
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
class GroupNorm32(nn.GroupNorm):
|
| 292 |
+
def forward(self, x):
|
| 293 |
+
if self.weight.dtype != torch.float32:
|
| 294 |
+
return super().forward(x)
|
| 295 |
+
return super().forward(x.float()).type(x.dtype)
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
class ResnetBlock2D(nn.Module):
|
| 299 |
+
def __init__(
|
| 300 |
+
self,
|
| 301 |
+
in_channels,
|
| 302 |
+
out_channels,
|
| 303 |
+
):
|
| 304 |
+
super().__init__()
|
| 305 |
+
self.in_channels = in_channels
|
| 306 |
+
self.out_channels = out_channels
|
| 307 |
+
|
| 308 |
+
self.in_layers = nn.Sequential(
|
| 309 |
+
GroupNorm32(32, in_channels),
|
| 310 |
+
nn.SiLU(),
|
| 311 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1),
|
| 312 |
+
)
|
| 313 |
+
|
| 314 |
+
self.emb_layers = nn.Sequential(nn.SiLU(), nn.Linear(TIME_EMBED_DIM, out_channels))
|
| 315 |
+
|
| 316 |
+
self.out_layers = nn.Sequential(
|
| 317 |
+
GroupNorm32(32, out_channels),
|
| 318 |
+
nn.SiLU(),
|
| 319 |
+
nn.Identity(), # to make state_dict compatible with original model
|
| 320 |
+
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
if in_channels != out_channels:
|
| 324 |
+
self.skip_connection = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
| 325 |
+
else:
|
| 326 |
+
self.skip_connection = nn.Identity()
|
| 327 |
+
|
| 328 |
+
self.gradient_checkpointing = False
|
| 329 |
+
|
| 330 |
+
def forward_body(self, x, emb):
|
| 331 |
+
h = self.in_layers(x)
|
| 332 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
| 333 |
+
h = h + emb_out[:, :, None, None]
|
| 334 |
+
h = self.out_layers(h)
|
| 335 |
+
x = self.skip_connection(x)
|
| 336 |
+
return x + h
|
| 337 |
+
|
| 338 |
+
def forward(self, x, emb):
|
| 339 |
+
if self.training and self.gradient_checkpointing:
|
| 340 |
+
# logger.info("ResnetBlock2D: gradient_checkpointing")
|
| 341 |
+
|
| 342 |
+
def create_custom_forward(func):
|
| 343 |
+
def custom_forward(*inputs):
|
| 344 |
+
return func(*inputs)
|
| 345 |
+
|
| 346 |
+
return custom_forward
|
| 347 |
+
|
| 348 |
+
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.forward_body), x, emb, use_reentrant=USE_REENTRANT)
|
| 349 |
+
else:
|
| 350 |
+
x = self.forward_body(x, emb)
|
| 351 |
+
|
| 352 |
+
return x
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
class Downsample2D(nn.Module):
|
| 356 |
+
def __init__(self, channels, out_channels):
|
| 357 |
+
super().__init__()
|
| 358 |
+
|
| 359 |
+
self.channels = channels
|
| 360 |
+
self.out_channels = out_channels
|
| 361 |
+
|
| 362 |
+
self.op = nn.Conv2d(self.channels, self.out_channels, 3, stride=2, padding=1)
|
| 363 |
+
|
| 364 |
+
self.gradient_checkpointing = False
|
| 365 |
+
|
| 366 |
+
def forward_body(self, hidden_states):
|
| 367 |
+
assert hidden_states.shape[1] == self.channels
|
| 368 |
+
hidden_states = self.op(hidden_states)
|
| 369 |
+
|
| 370 |
+
return hidden_states
|
| 371 |
+
|
| 372 |
+
def forward(self, hidden_states):
|
| 373 |
+
if self.training and self.gradient_checkpointing:
|
| 374 |
+
# logger.info("Downsample2D: gradient_checkpointing")
|
| 375 |
+
|
| 376 |
+
def create_custom_forward(func):
|
| 377 |
+
def custom_forward(*inputs):
|
| 378 |
+
return func(*inputs)
|
| 379 |
+
|
| 380 |
+
return custom_forward
|
| 381 |
+
|
| 382 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 383 |
+
create_custom_forward(self.forward_body), hidden_states, use_reentrant=USE_REENTRANT
|
| 384 |
+
)
|
| 385 |
+
else:
|
| 386 |
+
hidden_states = self.forward_body(hidden_states)
|
| 387 |
+
|
| 388 |
+
return hidden_states
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
class CrossAttention(nn.Module):
|
| 392 |
+
def __init__(
|
| 393 |
+
self,
|
| 394 |
+
query_dim: int,
|
| 395 |
+
cross_attention_dim: Optional[int] = None,
|
| 396 |
+
heads: int = 8,
|
| 397 |
+
dim_head: int = 64,
|
| 398 |
+
upcast_attention: bool = False,
|
| 399 |
+
):
|
| 400 |
+
super().__init__()
|
| 401 |
+
inner_dim = dim_head * heads
|
| 402 |
+
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
|
| 403 |
+
self.upcast_attention = upcast_attention
|
| 404 |
+
|
| 405 |
+
self.scale = dim_head**-0.5
|
| 406 |
+
self.heads = heads
|
| 407 |
+
|
| 408 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
| 409 |
+
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=False)
|
| 410 |
+
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=False)
|
| 411 |
+
|
| 412 |
+
self.to_out = nn.ModuleList([])
|
| 413 |
+
self.to_out.append(nn.Linear(inner_dim, query_dim))
|
| 414 |
+
# no dropout here
|
| 415 |
+
|
| 416 |
+
self.use_memory_efficient_attention_xformers = False
|
| 417 |
+
self.use_memory_efficient_attention_mem_eff = False
|
| 418 |
+
self.use_sdpa = False
|
| 419 |
+
|
| 420 |
+
def set_use_memory_efficient_attention(self, xformers, mem_eff):
|
| 421 |
+
self.use_memory_efficient_attention_xformers = xformers
|
| 422 |
+
self.use_memory_efficient_attention_mem_eff = mem_eff
|
| 423 |
+
|
| 424 |
+
def set_use_sdpa(self, sdpa):
|
| 425 |
+
self.use_sdpa = sdpa
|
| 426 |
+
|
| 427 |
+
def reshape_heads_to_batch_dim(self, tensor):
|
| 428 |
+
batch_size, seq_len, dim = tensor.shape
|
| 429 |
+
head_size = self.heads
|
| 430 |
+
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
|
| 431 |
+
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
|
| 432 |
+
return tensor
|
| 433 |
+
|
| 434 |
+
def reshape_batch_dim_to_heads(self, tensor):
|
| 435 |
+
batch_size, seq_len, dim = tensor.shape
|
| 436 |
+
head_size = self.heads
|
| 437 |
+
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
|
| 438 |
+
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
|
| 439 |
+
return tensor
|
| 440 |
+
|
| 441 |
+
def forward(self, hidden_states, context=None, mask=None):
|
| 442 |
+
if self.use_memory_efficient_attention_xformers:
|
| 443 |
+
return self.forward_memory_efficient_xformers(hidden_states, context, mask)
|
| 444 |
+
if self.use_memory_efficient_attention_mem_eff:
|
| 445 |
+
return self.forward_memory_efficient_mem_eff(hidden_states, context, mask)
|
| 446 |
+
if self.use_sdpa:
|
| 447 |
+
return self.forward_sdpa(hidden_states, context, mask)
|
| 448 |
+
|
| 449 |
+
query = self.to_q(hidden_states)
|
| 450 |
+
context = context if context is not None else hidden_states
|
| 451 |
+
key = self.to_k(context)
|
| 452 |
+
value = self.to_v(context)
|
| 453 |
+
|
| 454 |
+
query = self.reshape_heads_to_batch_dim(query)
|
| 455 |
+
key = self.reshape_heads_to_batch_dim(key)
|
| 456 |
+
value = self.reshape_heads_to_batch_dim(value)
|
| 457 |
+
|
| 458 |
+
hidden_states = self._attention(query, key, value)
|
| 459 |
+
|
| 460 |
+
# linear proj
|
| 461 |
+
hidden_states = self.to_out[0](hidden_states)
|
| 462 |
+
# hidden_states = self.to_out[1](hidden_states) # no dropout
|
| 463 |
+
return hidden_states
|
| 464 |
+
|
| 465 |
+
def _attention(self, query, key, value):
|
| 466 |
+
if self.upcast_attention:
|
| 467 |
+
query = query.float()
|
| 468 |
+
key = key.float()
|
| 469 |
+
|
| 470 |
+
attention_scores = torch.baddbmm(
|
| 471 |
+
torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
|
| 472 |
+
query,
|
| 473 |
+
key.transpose(-1, -2),
|
| 474 |
+
beta=0,
|
| 475 |
+
alpha=self.scale,
|
| 476 |
+
)
|
| 477 |
+
attention_probs = attention_scores.softmax(dim=-1)
|
| 478 |
+
|
| 479 |
+
# cast back to the original dtype
|
| 480 |
+
attention_probs = attention_probs.to(value.dtype)
|
| 481 |
+
|
| 482 |
+
# compute attention output
|
| 483 |
+
hidden_states = torch.bmm(attention_probs, value)
|
| 484 |
+
|
| 485 |
+
# reshape hidden_states
|
| 486 |
+
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
| 487 |
+
return hidden_states
|
| 488 |
+
|
| 489 |
+
# TODO support Hypernetworks
|
| 490 |
+
def forward_memory_efficient_xformers(self, x, context=None, mask=None):
|
| 491 |
+
import xformers.ops
|
| 492 |
+
|
| 493 |
+
h = self.heads
|
| 494 |
+
q_in = self.to_q(x)
|
| 495 |
+
context = context if context is not None else x
|
| 496 |
+
context = context.to(x.dtype)
|
| 497 |
+
k_in = self.to_k(context)
|
| 498 |
+
v_in = self.to_v(context)
|
| 499 |
+
|
| 500 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b n h d", h=h), (q_in, k_in, v_in))
|
| 501 |
+
del q_in, k_in, v_in
|
| 502 |
+
|
| 503 |
+
q = q.contiguous()
|
| 504 |
+
k = k.contiguous()
|
| 505 |
+
v = v.contiguous()
|
| 506 |
+
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる
|
| 507 |
+
del q, k, v
|
| 508 |
+
|
| 509 |
+
out = rearrange(out, "b n h d -> b n (h d)", h=h)
|
| 510 |
+
|
| 511 |
+
out = self.to_out[0](out)
|
| 512 |
+
return out
|
| 513 |
+
|
| 514 |
+
def forward_memory_efficient_mem_eff(self, x, context=None, mask=None):
|
| 515 |
+
flash_func = FlashAttentionFunction
|
| 516 |
+
|
| 517 |
+
q_bucket_size = 512
|
| 518 |
+
k_bucket_size = 1024
|
| 519 |
+
|
| 520 |
+
h = self.heads
|
| 521 |
+
q = self.to_q(x)
|
| 522 |
+
context = context if context is not None else x
|
| 523 |
+
context = context.to(x.dtype)
|
| 524 |
+
k = self.to_k(context)
|
| 525 |
+
v = self.to_v(context)
|
| 526 |
+
del context, x
|
| 527 |
+
|
| 528 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v))
|
| 529 |
+
|
| 530 |
+
out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size)
|
| 531 |
+
|
| 532 |
+
out = rearrange(out, "b h n d -> b n (h d)")
|
| 533 |
+
|
| 534 |
+
out = self.to_out[0](out)
|
| 535 |
+
return out
|
| 536 |
+
|
| 537 |
+
def forward_sdpa(self, x, context=None, mask=None):
|
| 538 |
+
h = self.heads
|
| 539 |
+
q_in = self.to_q(x)
|
| 540 |
+
context = context if context is not None else x
|
| 541 |
+
context = context.to(x.dtype)
|
| 542 |
+
k_in = self.to_k(context)
|
| 543 |
+
v_in = self.to_v(context)
|
| 544 |
+
|
| 545 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q_in, k_in, v_in))
|
| 546 |
+
del q_in, k_in, v_in
|
| 547 |
+
|
| 548 |
+
out = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
|
| 549 |
+
|
| 550 |
+
out = rearrange(out, "b h n d -> b n (h d)", h=h)
|
| 551 |
+
|
| 552 |
+
out = self.to_out[0](out)
|
| 553 |
+
return out
|
| 554 |
+
|
| 555 |
+
|
| 556 |
+
# feedforward
|
| 557 |
+
class GEGLU(nn.Module):
|
| 558 |
+
r"""
|
| 559 |
+
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.
|
| 560 |
+
|
| 561 |
+
Parameters:
|
| 562 |
+
dim_in (`int`): The number of channels in the input.
|
| 563 |
+
dim_out (`int`): The number of channels in the output.
|
| 564 |
+
"""
|
| 565 |
+
|
| 566 |
+
def __init__(self, dim_in: int, dim_out: int):
|
| 567 |
+
super().__init__()
|
| 568 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
| 569 |
+
|
| 570 |
+
def gelu(self, gate):
|
| 571 |
+
if gate.device.type != "mps":
|
| 572 |
+
return F.gelu(gate)
|
| 573 |
+
# mps: gelu is not implemented for float16
|
| 574 |
+
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)
|
| 575 |
+
|
| 576 |
+
def forward(self, hidden_states):
|
| 577 |
+
hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
|
| 578 |
+
return hidden_states * self.gelu(gate)
|
| 579 |
+
|
| 580 |
+
|
| 581 |
+
class FeedForward(nn.Module):
|
| 582 |
+
def __init__(
|
| 583 |
+
self,
|
| 584 |
+
dim: int,
|
| 585 |
+
):
|
| 586 |
+
super().__init__()
|
| 587 |
+
inner_dim = int(dim * 4) # mult is always 4
|
| 588 |
+
|
| 589 |
+
self.net = nn.ModuleList([])
|
| 590 |
+
# project in
|
| 591 |
+
self.net.append(GEGLU(dim, inner_dim))
|
| 592 |
+
# project dropout
|
| 593 |
+
self.net.append(nn.Identity()) # nn.Dropout(0)) # dummy for dropout with 0
|
| 594 |
+
# project out
|
| 595 |
+
self.net.append(nn.Linear(inner_dim, dim))
|
| 596 |
+
|
| 597 |
+
def forward(self, hidden_states):
|
| 598 |
+
for module in self.net:
|
| 599 |
+
hidden_states = module(hidden_states)
|
| 600 |
+
return hidden_states
|
| 601 |
+
|
| 602 |
+
|
| 603 |
+
class BasicTransformerBlock(nn.Module):
|
| 604 |
+
def __init__(
|
| 605 |
+
self, dim: int, num_attention_heads: int, attention_head_dim: int, cross_attention_dim: int, upcast_attention: bool = False
|
| 606 |
+
):
|
| 607 |
+
super().__init__()
|
| 608 |
+
|
| 609 |
+
self.gradient_checkpointing = False
|
| 610 |
+
|
| 611 |
+
# 1. Self-Attn
|
| 612 |
+
self.attn1 = CrossAttention(
|
| 613 |
+
query_dim=dim,
|
| 614 |
+
cross_attention_dim=None,
|
| 615 |
+
heads=num_attention_heads,
|
| 616 |
+
dim_head=attention_head_dim,
|
| 617 |
+
upcast_attention=upcast_attention,
|
| 618 |
+
)
|
| 619 |
+
self.ff = FeedForward(dim)
|
| 620 |
+
|
| 621 |
+
# 2. Cross-Attn
|
| 622 |
+
self.attn2 = CrossAttention(
|
| 623 |
+
query_dim=dim,
|
| 624 |
+
cross_attention_dim=cross_attention_dim,
|
| 625 |
+
heads=num_attention_heads,
|
| 626 |
+
dim_head=attention_head_dim,
|
| 627 |
+
upcast_attention=upcast_attention,
|
| 628 |
+
)
|
| 629 |
+
|
| 630 |
+
self.norm1 = nn.LayerNorm(dim)
|
| 631 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 632 |
+
|
| 633 |
+
# 3. Feed-forward
|
| 634 |
+
self.norm3 = nn.LayerNorm(dim)
|
| 635 |
+
|
| 636 |
+
def set_use_memory_efficient_attention(self, xformers: bool, mem_eff: bool):
|
| 637 |
+
self.attn1.set_use_memory_efficient_attention(xformers, mem_eff)
|
| 638 |
+
self.attn2.set_use_memory_efficient_attention(xformers, mem_eff)
|
| 639 |
+
|
| 640 |
+
def set_use_sdpa(self, sdpa: bool):
|
| 641 |
+
self.attn1.set_use_sdpa(sdpa)
|
| 642 |
+
self.attn2.set_use_sdpa(sdpa)
|
| 643 |
+
|
| 644 |
+
def forward_body(self, hidden_states, context=None, timestep=None):
|
| 645 |
+
# 1. Self-Attention
|
| 646 |
+
norm_hidden_states = self.norm1(hidden_states)
|
| 647 |
+
|
| 648 |
+
hidden_states = self.attn1(norm_hidden_states) + hidden_states
|
| 649 |
+
|
| 650 |
+
# 2. Cross-Attention
|
| 651 |
+
norm_hidden_states = self.norm2(hidden_states)
|
| 652 |
+
hidden_states = self.attn2(norm_hidden_states, context=context) + hidden_states
|
| 653 |
+
|
| 654 |
+
# 3. Feed-forward
|
| 655 |
+
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
| 656 |
+
|
| 657 |
+
return hidden_states
|
| 658 |
+
|
| 659 |
+
def forward(self, hidden_states, context=None, timestep=None):
|
| 660 |
+
if self.training and self.gradient_checkpointing:
|
| 661 |
+
# logger.info("BasicTransformerBlock: checkpointing")
|
| 662 |
+
|
| 663 |
+
def create_custom_forward(func):
|
| 664 |
+
def custom_forward(*inputs):
|
| 665 |
+
return func(*inputs)
|
| 666 |
+
|
| 667 |
+
return custom_forward
|
| 668 |
+
|
| 669 |
+
output = torch.utils.checkpoint.checkpoint(
|
| 670 |
+
create_custom_forward(self.forward_body), hidden_states, context, timestep, use_reentrant=USE_REENTRANT
|
| 671 |
+
)
|
| 672 |
+
else:
|
| 673 |
+
output = self.forward_body(hidden_states, context, timestep)
|
| 674 |
+
|
| 675 |
+
return output
|
| 676 |
+
|
| 677 |
+
|
| 678 |
+
class Transformer2DModel(nn.Module):
|
| 679 |
+
def __init__(
|
| 680 |
+
self,
|
| 681 |
+
num_attention_heads: int = 16,
|
| 682 |
+
attention_head_dim: int = 88,
|
| 683 |
+
in_channels: Optional[int] = None,
|
| 684 |
+
cross_attention_dim: Optional[int] = None,
|
| 685 |
+
use_linear_projection: bool = False,
|
| 686 |
+
upcast_attention: bool = False,
|
| 687 |
+
num_transformer_layers: int = 1,
|
| 688 |
+
):
|
| 689 |
+
super().__init__()
|
| 690 |
+
self.in_channels = in_channels
|
| 691 |
+
self.num_attention_heads = num_attention_heads
|
| 692 |
+
self.attention_head_dim = attention_head_dim
|
| 693 |
+
inner_dim = num_attention_heads * attention_head_dim
|
| 694 |
+
self.use_linear_projection = use_linear_projection
|
| 695 |
+
|
| 696 |
+
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
| 697 |
+
# self.norm = GroupNorm32(32, in_channels, eps=1e-6, affine=True)
|
| 698 |
+
|
| 699 |
+
if use_linear_projection:
|
| 700 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
| 701 |
+
else:
|
| 702 |
+
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
| 703 |
+
|
| 704 |
+
blocks = []
|
| 705 |
+
for _ in range(num_transformer_layers):
|
| 706 |
+
blocks.append(
|
| 707 |
+
BasicTransformerBlock(
|
| 708 |
+
inner_dim,
|
| 709 |
+
num_attention_heads,
|
| 710 |
+
attention_head_dim,
|
| 711 |
+
cross_attention_dim=cross_attention_dim,
|
| 712 |
+
upcast_attention=upcast_attention,
|
| 713 |
+
)
|
| 714 |
+
)
|
| 715 |
+
|
| 716 |
+
self.transformer_blocks = nn.ModuleList(blocks)
|
| 717 |
+
|
| 718 |
+
if use_linear_projection:
|
| 719 |
+
self.proj_out = nn.Linear(in_channels, inner_dim)
|
| 720 |
+
else:
|
| 721 |
+
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
| 722 |
+
|
| 723 |
+
self.gradient_checkpointing = False
|
| 724 |
+
|
| 725 |
+
def set_use_memory_efficient_attention(self, xformers, mem_eff):
|
| 726 |
+
for transformer in self.transformer_blocks:
|
| 727 |
+
transformer.set_use_memory_efficient_attention(xformers, mem_eff)
|
| 728 |
+
|
| 729 |
+
def set_use_sdpa(self, sdpa):
|
| 730 |
+
for transformer in self.transformer_blocks:
|
| 731 |
+
transformer.set_use_sdpa(sdpa)
|
| 732 |
+
|
| 733 |
+
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None):
|
| 734 |
+
# 1. Input
|
| 735 |
+
batch, _, height, weight = hidden_states.shape
|
| 736 |
+
residual = hidden_states
|
| 737 |
+
|
| 738 |
+
hidden_states = self.norm(hidden_states)
|
| 739 |
+
if not self.use_linear_projection:
|
| 740 |
+
hidden_states = self.proj_in(hidden_states)
|
| 741 |
+
inner_dim = hidden_states.shape[1]
|
| 742 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
| 743 |
+
else:
|
| 744 |
+
inner_dim = hidden_states.shape[1]
|
| 745 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
| 746 |
+
hidden_states = self.proj_in(hidden_states)
|
| 747 |
+
|
| 748 |
+
# 2. Blocks
|
| 749 |
+
for block in self.transformer_blocks:
|
| 750 |
+
hidden_states = block(hidden_states, context=encoder_hidden_states, timestep=timestep)
|
| 751 |
+
|
| 752 |
+
# 3. Output
|
| 753 |
+
if not self.use_linear_projection:
|
| 754 |
+
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
|
| 755 |
+
hidden_states = self.proj_out(hidden_states)
|
| 756 |
+
else:
|
| 757 |
+
hidden_states = self.proj_out(hidden_states)
|
| 758 |
+
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
|
| 759 |
+
|
| 760 |
+
output = hidden_states + residual
|
| 761 |
+
|
| 762 |
+
return output
|
| 763 |
+
|
| 764 |
+
|
| 765 |
+
class Upsample2D(nn.Module):
|
| 766 |
+
def __init__(self, channels, out_channels):
|
| 767 |
+
super().__init__()
|
| 768 |
+
self.channels = channels
|
| 769 |
+
self.out_channels = out_channels
|
| 770 |
+
self.conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1)
|
| 771 |
+
|
| 772 |
+
self.gradient_checkpointing = False
|
| 773 |
+
|
| 774 |
+
def forward_body(self, hidden_states, output_size=None):
|
| 775 |
+
assert hidden_states.shape[1] == self.channels
|
| 776 |
+
|
| 777 |
+
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
|
| 778 |
+
# TODO(Suraj): Remove this cast once the issue is fixed in PyTorch
|
| 779 |
+
# https://github.com/pytorch/pytorch/issues/86679
|
| 780 |
+
dtype = hidden_states.dtype
|
| 781 |
+
if dtype == torch.bfloat16:
|
| 782 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 783 |
+
|
| 784 |
+
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
| 785 |
+
if hidden_states.shape[0] >= 64:
|
| 786 |
+
hidden_states = hidden_states.contiguous()
|
| 787 |
+
|
| 788 |
+
# if `output_size` is passed we force the interpolation output size and do not make use of `scale_factor=2`
|
| 789 |
+
if output_size is None:
|
| 790 |
+
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
|
| 791 |
+
else:
|
| 792 |
+
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
|
| 793 |
+
|
| 794 |
+
# If the input is bfloat16, we cast back to bfloat16
|
| 795 |
+
if dtype == torch.bfloat16:
|
| 796 |
+
hidden_states = hidden_states.to(dtype)
|
| 797 |
+
|
| 798 |
+
hidden_states = self.conv(hidden_states)
|
| 799 |
+
|
| 800 |
+
return hidden_states
|
| 801 |
+
|
| 802 |
+
def forward(self, hidden_states, output_size=None):
|
| 803 |
+
if self.training and self.gradient_checkpointing:
|
| 804 |
+
# logger.info("Upsample2D: gradient_checkpointing")
|
| 805 |
+
|
| 806 |
+
def create_custom_forward(func):
|
| 807 |
+
def custom_forward(*inputs):
|
| 808 |
+
return func(*inputs)
|
| 809 |
+
|
| 810 |
+
return custom_forward
|
| 811 |
+
|
| 812 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 813 |
+
create_custom_forward(self.forward_body), hidden_states, output_size, use_reentrant=USE_REENTRANT
|
| 814 |
+
)
|
| 815 |
+
else:
|
| 816 |
+
hidden_states = self.forward_body(hidden_states, output_size)
|
| 817 |
+
|
| 818 |
+
return hidden_states
|
| 819 |
+
|
| 820 |
+
|
| 821 |
+
class SdxlUNet2DConditionModel(nn.Module):
|
| 822 |
+
_supports_gradient_checkpointing = True
|
| 823 |
+
|
| 824 |
+
def __init__(
|
| 825 |
+
self,
|
| 826 |
+
**kwargs,
|
| 827 |
+
):
|
| 828 |
+
super().__init__()
|
| 829 |
+
|
| 830 |
+
self.in_channels = IN_CHANNELS
|
| 831 |
+
self.out_channels = OUT_CHANNELS
|
| 832 |
+
self.model_channels = MODEL_CHANNELS
|
| 833 |
+
self.time_embed_dim = TIME_EMBED_DIM
|
| 834 |
+
self.adm_in_channels = ADM_IN_CHANNELS
|
| 835 |
+
|
| 836 |
+
self.gradient_checkpointing = False
|
| 837 |
+
# self.sample_size = sample_size
|
| 838 |
+
|
| 839 |
+
# time embedding
|
| 840 |
+
self.time_embed = nn.Sequential(
|
| 841 |
+
nn.Linear(self.model_channels, self.time_embed_dim),
|
| 842 |
+
nn.SiLU(),
|
| 843 |
+
nn.Linear(self.time_embed_dim, self.time_embed_dim),
|
| 844 |
+
)
|
| 845 |
+
|
| 846 |
+
# label embedding
|
| 847 |
+
self.label_emb = nn.Sequential(
|
| 848 |
+
nn.Sequential(
|
| 849 |
+
nn.Linear(self.adm_in_channels, self.time_embed_dim),
|
| 850 |
+
nn.SiLU(),
|
| 851 |
+
nn.Linear(self.time_embed_dim, self.time_embed_dim),
|
| 852 |
+
)
|
| 853 |
+
)
|
| 854 |
+
|
| 855 |
+
# input
|
| 856 |
+
self.input_blocks = nn.ModuleList(
|
| 857 |
+
[
|
| 858 |
+
nn.Sequential(
|
| 859 |
+
nn.Conv2d(self.in_channels, self.model_channels, kernel_size=3, padding=(1, 1)),
|
| 860 |
+
)
|
| 861 |
+
]
|
| 862 |
+
)
|
| 863 |
+
|
| 864 |
+
# level 0
|
| 865 |
+
for i in range(2):
|
| 866 |
+
layers = [
|
| 867 |
+
ResnetBlock2D(
|
| 868 |
+
in_channels=1 * self.model_channels,
|
| 869 |
+
out_channels=1 * self.model_channels,
|
| 870 |
+
),
|
| 871 |
+
]
|
| 872 |
+
self.input_blocks.append(nn.ModuleList(layers))
|
| 873 |
+
|
| 874 |
+
self.input_blocks.append(
|
| 875 |
+
nn.Sequential(
|
| 876 |
+
Downsample2D(
|
| 877 |
+
channels=1 * self.model_channels,
|
| 878 |
+
out_channels=1 * self.model_channels,
|
| 879 |
+
),
|
| 880 |
+
)
|
| 881 |
+
)
|
| 882 |
+
|
| 883 |
+
# level 1
|
| 884 |
+
for i in range(2):
|
| 885 |
+
layers = [
|
| 886 |
+
ResnetBlock2D(
|
| 887 |
+
in_channels=(1 if i == 0 else 2) * self.model_channels,
|
| 888 |
+
out_channels=2 * self.model_channels,
|
| 889 |
+
),
|
| 890 |
+
Transformer2DModel(
|
| 891 |
+
num_attention_heads=2 * self.model_channels // 64,
|
| 892 |
+
attention_head_dim=64,
|
| 893 |
+
in_channels=2 * self.model_channels,
|
| 894 |
+
num_transformer_layers=2,
|
| 895 |
+
use_linear_projection=True,
|
| 896 |
+
cross_attention_dim=2048,
|
| 897 |
+
),
|
| 898 |
+
]
|
| 899 |
+
self.input_blocks.append(nn.ModuleList(layers))
|
| 900 |
+
|
| 901 |
+
self.input_blocks.append(
|
| 902 |
+
nn.Sequential(
|
| 903 |
+
Downsample2D(
|
| 904 |
+
channels=2 * self.model_channels,
|
| 905 |
+
out_channels=2 * self.model_channels,
|
| 906 |
+
),
|
| 907 |
+
)
|
| 908 |
+
)
|
| 909 |
+
|
| 910 |
+
# level 2
|
| 911 |
+
for i in range(2):
|
| 912 |
+
layers = [
|
| 913 |
+
ResnetBlock2D(
|
| 914 |
+
in_channels=(2 if i == 0 else 4) * self.model_channels,
|
| 915 |
+
out_channels=4 * self.model_channels,
|
| 916 |
+
),
|
| 917 |
+
Transformer2DModel(
|
| 918 |
+
num_attention_heads=4 * self.model_channels // 64,
|
| 919 |
+
attention_head_dim=64,
|
| 920 |
+
in_channels=4 * self.model_channels,
|
| 921 |
+
num_transformer_layers=10,
|
| 922 |
+
use_linear_projection=True,
|
| 923 |
+
cross_attention_dim=2048,
|
| 924 |
+
),
|
| 925 |
+
]
|
| 926 |
+
self.input_blocks.append(nn.ModuleList(layers))
|
| 927 |
+
|
| 928 |
+
# mid
|
| 929 |
+
self.middle_block = nn.ModuleList(
|
| 930 |
+
[
|
| 931 |
+
ResnetBlock2D(
|
| 932 |
+
in_channels=4 * self.model_channels,
|
| 933 |
+
out_channels=4 * self.model_channels,
|
| 934 |
+
),
|
| 935 |
+
Transformer2DModel(
|
| 936 |
+
num_attention_heads=4 * self.model_channels // 64,
|
| 937 |
+
attention_head_dim=64,
|
| 938 |
+
in_channels=4 * self.model_channels,
|
| 939 |
+
num_transformer_layers=10,
|
| 940 |
+
use_linear_projection=True,
|
| 941 |
+
cross_attention_dim=2048,
|
| 942 |
+
),
|
| 943 |
+
ResnetBlock2D(
|
| 944 |
+
in_channels=4 * self.model_channels,
|
| 945 |
+
out_channels=4 * self.model_channels,
|
| 946 |
+
),
|
| 947 |
+
]
|
| 948 |
+
)
|
| 949 |
+
|
| 950 |
+
# output
|
| 951 |
+
self.output_blocks = nn.ModuleList([])
|
| 952 |
+
|
| 953 |
+
# level 2
|
| 954 |
+
for i in range(3):
|
| 955 |
+
layers = [
|
| 956 |
+
ResnetBlock2D(
|
| 957 |
+
in_channels=4 * self.model_channels + (4 if i <= 1 else 2) * self.model_channels,
|
| 958 |
+
out_channels=4 * self.model_channels,
|
| 959 |
+
),
|
| 960 |
+
Transformer2DModel(
|
| 961 |
+
num_attention_heads=4 * self.model_channels // 64,
|
| 962 |
+
attention_head_dim=64,
|
| 963 |
+
in_channels=4 * self.model_channels,
|
| 964 |
+
num_transformer_layers=10,
|
| 965 |
+
use_linear_projection=True,
|
| 966 |
+
cross_attention_dim=2048,
|
| 967 |
+
),
|
| 968 |
+
]
|
| 969 |
+
if i == 2:
|
| 970 |
+
layers.append(
|
| 971 |
+
Upsample2D(
|
| 972 |
+
channels=4 * self.model_channels,
|
| 973 |
+
out_channels=4 * self.model_channels,
|
| 974 |
+
)
|
| 975 |
+
)
|
| 976 |
+
|
| 977 |
+
self.output_blocks.append(nn.ModuleList(layers))
|
| 978 |
+
|
| 979 |
+
# level 1
|
| 980 |
+
for i in range(3):
|
| 981 |
+
layers = [
|
| 982 |
+
ResnetBlock2D(
|
| 983 |
+
in_channels=2 * self.model_channels + (4 if i == 0 else (2 if i == 1 else 1)) * self.model_channels,
|
| 984 |
+
out_channels=2 * self.model_channels,
|
| 985 |
+
),
|
| 986 |
+
Transformer2DModel(
|
| 987 |
+
num_attention_heads=2 * self.model_channels // 64,
|
| 988 |
+
attention_head_dim=64,
|
| 989 |
+
in_channels=2 * self.model_channels,
|
| 990 |
+
num_transformer_layers=2,
|
| 991 |
+
use_linear_projection=True,
|
| 992 |
+
cross_attention_dim=2048,
|
| 993 |
+
),
|
| 994 |
+
]
|
| 995 |
+
if i == 2:
|
| 996 |
+
layers.append(
|
| 997 |
+
Upsample2D(
|
| 998 |
+
channels=2 * self.model_channels,
|
| 999 |
+
out_channels=2 * self.model_channels,
|
| 1000 |
+
)
|
| 1001 |
+
)
|
| 1002 |
+
|
| 1003 |
+
self.output_blocks.append(nn.ModuleList(layers))
|
| 1004 |
+
|
| 1005 |
+
# level 0
|
| 1006 |
+
for i in range(3):
|
| 1007 |
+
layers = [
|
| 1008 |
+
ResnetBlock2D(
|
| 1009 |
+
in_channels=1 * self.model_channels + (2 if i == 0 else 1) * self.model_channels,
|
| 1010 |
+
out_channels=1 * self.model_channels,
|
| 1011 |
+
),
|
| 1012 |
+
]
|
| 1013 |
+
|
| 1014 |
+
self.output_blocks.append(nn.ModuleList(layers))
|
| 1015 |
+
|
| 1016 |
+
# output
|
| 1017 |
+
self.out = nn.ModuleList(
|
| 1018 |
+
[GroupNorm32(32, self.model_channels), nn.SiLU(), nn.Conv2d(self.model_channels, self.out_channels, 3, padding=1)]
|
| 1019 |
+
)
|
| 1020 |
+
|
| 1021 |
+
# region diffusers compatibility
|
| 1022 |
+
def prepare_config(self):
|
| 1023 |
+
self.config = SimpleNamespace()
|
| 1024 |
+
|
| 1025 |
+
@property
|
| 1026 |
+
def dtype(self) -> torch.dtype:
|
| 1027 |
+
# `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
|
| 1028 |
+
return get_parameter_dtype(self)
|
| 1029 |
+
|
| 1030 |
+
@property
|
| 1031 |
+
def device(self) -> torch.device:
|
| 1032 |
+
# `torch.device`: The device on which the module is (assuming that all the module parameters are on the same device).
|
| 1033 |
+
return get_parameter_device(self)
|
| 1034 |
+
|
| 1035 |
+
def set_attention_slice(self, slice_size):
|
| 1036 |
+
raise NotImplementedError("Attention slicing is not supported for this model.")
|
| 1037 |
+
|
| 1038 |
+
def is_gradient_checkpointing(self) -> bool:
|
| 1039 |
+
return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())
|
| 1040 |
+
|
| 1041 |
+
def enable_gradient_checkpointing(self):
|
| 1042 |
+
self.gradient_checkpointing = True
|
| 1043 |
+
self.set_gradient_checkpointing(value=True)
|
| 1044 |
+
|
| 1045 |
+
def disable_gradient_checkpointing(self):
|
| 1046 |
+
self.gradient_checkpointing = False
|
| 1047 |
+
self.set_gradient_checkpointing(value=False)
|
| 1048 |
+
|
| 1049 |
+
def set_use_memory_efficient_attention(self, xformers: bool, mem_eff: bool) -> None:
|
| 1050 |
+
blocks = self.input_blocks + [self.middle_block] + self.output_blocks
|
| 1051 |
+
for block in blocks:
|
| 1052 |
+
for module in block:
|
| 1053 |
+
if hasattr(module, "set_use_memory_efficient_attention"):
|
| 1054 |
+
# logger.info(module.__class__.__name__)
|
| 1055 |
+
module.set_use_memory_efficient_attention(xformers, mem_eff)
|
| 1056 |
+
|
| 1057 |
+
def set_use_sdpa(self, sdpa: bool) -> None:
|
| 1058 |
+
blocks = self.input_blocks + [self.middle_block] + self.output_blocks
|
| 1059 |
+
for block in blocks:
|
| 1060 |
+
for module in block:
|
| 1061 |
+
if hasattr(module, "set_use_sdpa"):
|
| 1062 |
+
module.set_use_sdpa(sdpa)
|
| 1063 |
+
|
| 1064 |
+
def set_gradient_checkpointing(self, value=False):
|
| 1065 |
+
blocks = self.input_blocks + [self.middle_block] + self.output_blocks
|
| 1066 |
+
for block in blocks:
|
| 1067 |
+
for module in block.modules():
|
| 1068 |
+
if hasattr(module, "gradient_checkpointing"):
|
| 1069 |
+
# logger.info(f{module.__class__.__name__} {module.gradient_checkpointing} -> {value}")
|
| 1070 |
+
module.gradient_checkpointing = value
|
| 1071 |
+
|
| 1072 |
+
# endregion
|
| 1073 |
+
|
| 1074 |
+
def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
|
| 1075 |
+
# broadcast timesteps to batch dimension
|
| 1076 |
+
timesteps = timesteps.expand(x.shape[0])
|
| 1077 |
+
|
| 1078 |
+
hs = []
|
| 1079 |
+
t_emb = get_timestep_embedding(timesteps, self.model_channels, downscale_freq_shift=0) # , repeat_only=False)
|
| 1080 |
+
t_emb = t_emb.to(x.dtype)
|
| 1081 |
+
emb = self.time_embed(t_emb)
|
| 1082 |
+
|
| 1083 |
+
assert x.shape[0] == y.shape[0], f"batch size mismatch: {x.shape[0]} != {y.shape[0]}"
|
| 1084 |
+
assert x.dtype == y.dtype, f"dtype mismatch: {x.dtype} != {y.dtype}"
|
| 1085 |
+
# assert x.dtype == self.dtype
|
| 1086 |
+
emb = emb + self.label_emb(y)
|
| 1087 |
+
|
| 1088 |
+
def call_module(module, h, emb, context):
|
| 1089 |
+
x = h
|
| 1090 |
+
for layer in module:
|
| 1091 |
+
# logger.info(layer.__class__.__name__, x.dtype, emb.dtype, context.dtype if context is not None else None)
|
| 1092 |
+
if isinstance(layer, ResnetBlock2D):
|
| 1093 |
+
x = layer(x, emb)
|
| 1094 |
+
elif isinstance(layer, Transformer2DModel):
|
| 1095 |
+
x = layer(x, context)
|
| 1096 |
+
else:
|
| 1097 |
+
x = layer(x)
|
| 1098 |
+
return x
|
| 1099 |
+
|
| 1100 |
+
# h = x.type(self.dtype)
|
| 1101 |
+
h = x
|
| 1102 |
+
|
| 1103 |
+
for module in self.input_blocks:
|
| 1104 |
+
h = call_module(module, h, emb, context)
|
| 1105 |
+
hs.append(h)
|
| 1106 |
+
|
| 1107 |
+
h = call_module(self.middle_block, h, emb, context)
|
| 1108 |
+
|
| 1109 |
+
for module in self.output_blocks:
|
| 1110 |
+
h = torch.cat([h, hs.pop()], dim=1)
|
| 1111 |
+
h = call_module(module, h, emb, context)
|
| 1112 |
+
|
| 1113 |
+
h = h.type(x.dtype)
|
| 1114 |
+
h = call_module(self.out, h, emb, context)
|
| 1115 |
+
|
| 1116 |
+
return h
|
| 1117 |
+
|
| 1118 |
+
|
| 1119 |
+
class InferSdxlUNet2DConditionModel:
|
| 1120 |
+
def __init__(self, original_unet: SdxlUNet2DConditionModel, **kwargs):
|
| 1121 |
+
self.delegate = original_unet
|
| 1122 |
+
|
| 1123 |
+
# override original model's forward method: because forward is not called by `__call__`
|
| 1124 |
+
# overriding `__call__` is not enough, because nn.Module.forward has a special handling
|
| 1125 |
+
self.delegate.forward = self.forward
|
| 1126 |
+
|
| 1127 |
+
# Deep Shrink
|
| 1128 |
+
self.ds_depth_1 = None
|
| 1129 |
+
self.ds_depth_2 = None
|
| 1130 |
+
self.ds_timesteps_1 = None
|
| 1131 |
+
self.ds_timesteps_2 = None
|
| 1132 |
+
self.ds_ratio = None
|
| 1133 |
+
|
| 1134 |
+
# call original model's methods
|
| 1135 |
+
def __getattr__(self, name):
|
| 1136 |
+
return getattr(self.delegate, name)
|
| 1137 |
+
|
| 1138 |
+
def __call__(self, *args, **kwargs):
|
| 1139 |
+
return self.delegate(*args, **kwargs)
|
| 1140 |
+
|
| 1141 |
+
def set_deep_shrink(self, ds_depth_1, ds_timesteps_1=650, ds_depth_2=None, ds_timesteps_2=None, ds_ratio=0.5):
|
| 1142 |
+
if ds_depth_1 is None:
|
| 1143 |
+
logger.info("Deep Shrink is disabled.")
|
| 1144 |
+
self.ds_depth_1 = None
|
| 1145 |
+
self.ds_timesteps_1 = None
|
| 1146 |
+
self.ds_depth_2 = None
|
| 1147 |
+
self.ds_timesteps_2 = None
|
| 1148 |
+
self.ds_ratio = None
|
| 1149 |
+
else:
|
| 1150 |
+
logger.info(
|
| 1151 |
+
f"Deep Shrink is enabled: [depth={ds_depth_1}/{ds_depth_2}, timesteps={ds_timesteps_1}/{ds_timesteps_2}, ratio={ds_ratio}]"
|
| 1152 |
+
)
|
| 1153 |
+
self.ds_depth_1 = ds_depth_1
|
| 1154 |
+
self.ds_timesteps_1 = ds_timesteps_1
|
| 1155 |
+
self.ds_depth_2 = ds_depth_2 if ds_depth_2 is not None else -1
|
| 1156 |
+
self.ds_timesteps_2 = ds_timesteps_2 if ds_timesteps_2 is not None else 1000
|
| 1157 |
+
self.ds_ratio = ds_ratio
|
| 1158 |
+
|
| 1159 |
+
def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
|
| 1160 |
+
r"""
|
| 1161 |
+
current implementation is a copy of `SdxlUNet2DConditionModel.forward()` with Deep Shrink.
|
| 1162 |
+
"""
|
| 1163 |
+
_self = self.delegate
|
| 1164 |
+
|
| 1165 |
+
# broadcast timesteps to batch dimension
|
| 1166 |
+
timesteps = timesteps.expand(x.shape[0])
|
| 1167 |
+
|
| 1168 |
+
hs = []
|
| 1169 |
+
t_emb = get_timestep_embedding(timesteps, _self.model_channels, downscale_freq_shift=0) # , repeat_only=False)
|
| 1170 |
+
t_emb = t_emb.to(x.dtype)
|
| 1171 |
+
emb = _self.time_embed(t_emb)
|
| 1172 |
+
|
| 1173 |
+
assert x.shape[0] == y.shape[0], f"batch size mismatch: {x.shape[0]} != {y.shape[0]}"
|
| 1174 |
+
assert x.dtype == y.dtype, f"dtype mismatch: {x.dtype} != {y.dtype}"
|
| 1175 |
+
# assert x.dtype == _self.dtype
|
| 1176 |
+
emb = emb + _self.label_emb(y)
|
| 1177 |
+
|
| 1178 |
+
def call_module(module, h, emb, context):
|
| 1179 |
+
x = h
|
| 1180 |
+
for layer in module:
|
| 1181 |
+
# print(layer.__class__.__name__, x.dtype, emb.dtype, context.dtype if context is not None else None)
|
| 1182 |
+
if isinstance(layer, ResnetBlock2D):
|
| 1183 |
+
x = layer(x, emb)
|
| 1184 |
+
elif isinstance(layer, Transformer2DModel):
|
| 1185 |
+
x = layer(x, context)
|
| 1186 |
+
else:
|
| 1187 |
+
x = layer(x)
|
| 1188 |
+
return x
|
| 1189 |
+
|
| 1190 |
+
# h = x.type(self.dtype)
|
| 1191 |
+
h = x
|
| 1192 |
+
|
| 1193 |
+
for depth, module in enumerate(_self.input_blocks):
|
| 1194 |
+
# Deep Shrink
|
| 1195 |
+
if self.ds_depth_1 is not None:
|
| 1196 |
+
if (depth == self.ds_depth_1 and timesteps[0] >= self.ds_timesteps_1) or (
|
| 1197 |
+
self.ds_depth_2 is not None
|
| 1198 |
+
and depth == self.ds_depth_2
|
| 1199 |
+
and timesteps[0] < self.ds_timesteps_1
|
| 1200 |
+
and timesteps[0] >= self.ds_timesteps_2
|
| 1201 |
+
):
|
| 1202 |
+
# print("downsample", h.shape, self.ds_ratio)
|
| 1203 |
+
org_dtype = h.dtype
|
| 1204 |
+
if org_dtype == torch.bfloat16:
|
| 1205 |
+
h = h.to(torch.float32)
|
| 1206 |
+
h = F.interpolate(h, scale_factor=self.ds_ratio, mode="bicubic", align_corners=False).to(org_dtype)
|
| 1207 |
+
|
| 1208 |
+
h = call_module(module, h, emb, context)
|
| 1209 |
+
hs.append(h)
|
| 1210 |
+
|
| 1211 |
+
h = call_module(_self.middle_block, h, emb, context)
|
| 1212 |
+
|
| 1213 |
+
for module in _self.output_blocks:
|
| 1214 |
+
# Deep Shrink
|
| 1215 |
+
if self.ds_depth_1 is not None:
|
| 1216 |
+
if hs[-1].shape[-2:] != h.shape[-2:]:
|
| 1217 |
+
# print("upsample", h.shape, hs[-1].shape)
|
| 1218 |
+
h = resize_like(h, hs[-1])
|
| 1219 |
+
|
| 1220 |
+
h = torch.cat([h, hs.pop()], dim=1)
|
| 1221 |
+
h = call_module(module, h, emb, context)
|
| 1222 |
+
|
| 1223 |
+
# Deep Shrink: in case of depth 0
|
| 1224 |
+
if self.ds_depth_1 == 0 and h.shape[-2:] != x.shape[-2:]:
|
| 1225 |
+
# print("upsample", h.shape, x.shape)
|
| 1226 |
+
h = resize_like(h, x)
|
| 1227 |
+
|
| 1228 |
+
h = h.type(x.dtype)
|
| 1229 |
+
h = call_module(_self.out, h, emb, context)
|
| 1230 |
+
|
| 1231 |
+
return h
|
| 1232 |
+
|
| 1233 |
+
|
| 1234 |
+
if __name__ == "__main__":
|
| 1235 |
+
import time
|
| 1236 |
+
|
| 1237 |
+
logger.info("create unet")
|
| 1238 |
+
unet = SdxlUNet2DConditionModel()
|
| 1239 |
+
|
| 1240 |
+
unet.to("cuda")
|
| 1241 |
+
unet.set_use_memory_efficient_attention(True, False)
|
| 1242 |
+
unet.set_gradient_checkpointing(True)
|
| 1243 |
+
unet.train()
|
| 1244 |
+
|
| 1245 |
+
# 使用メモリ量確認用の疑似学習ループ
|
| 1246 |
+
logger.info("preparing optimizer")
|
| 1247 |
+
|
| 1248 |
+
# optimizer = torch.optim.SGD(unet.parameters(), lr=1e-3, nesterov=True, momentum=0.9) # not working
|
| 1249 |
+
|
| 1250 |
+
# import bitsandbytes
|
| 1251 |
+
# optimizer = bitsandbytes.adam.Adam8bit(unet.parameters(), lr=1e-3) # not working
|
| 1252 |
+
# optimizer = bitsandbytes.optim.RMSprop8bit(unet.parameters(), lr=1e-3) # working at 23.5 GB with torch2
|
| 1253 |
+
# optimizer=bitsandbytes.optim.Adagrad8bit(unet.parameters(), lr=1e-3) # working at 23.5 GB with torch2
|
| 1254 |
+
|
| 1255 |
+
import transformers
|
| 1256 |
+
|
| 1257 |
+
optimizer = transformers.optimization.Adafactor(unet.parameters(), relative_step=True) # working at 22.2GB with torch2
|
| 1258 |
+
|
| 1259 |
+
scaler = torch.cuda.amp.GradScaler(enabled=True)
|
| 1260 |
+
|
| 1261 |
+
logger.info("start training")
|
| 1262 |
+
steps = 10
|
| 1263 |
+
batch_size = 1
|
| 1264 |
+
|
| 1265 |
+
for step in range(steps):
|
| 1266 |
+
logger.info(f"step {step}")
|
| 1267 |
+
if step == 1:
|
| 1268 |
+
time_start = time.perf_counter()
|
| 1269 |
+
|
| 1270 |
+
x = torch.randn(batch_size, 4, 128, 128).cuda() # 1024x1024
|
| 1271 |
+
t = torch.randint(low=0, high=10, size=(batch_size,), device="cuda")
|
| 1272 |
+
ctx = torch.randn(batch_size, 77, 2048).cuda()
|
| 1273 |
+
y = torch.randn(batch_size, ADM_IN_CHANNELS).cuda()
|
| 1274 |
+
|
| 1275 |
+
with torch.cuda.amp.autocast(enabled=True):
|
| 1276 |
+
output = unet(x, t, ctx, y)
|
| 1277 |
+
target = torch.randn_like(output)
|
| 1278 |
+
loss = torch.nn.functional.mse_loss(output, target)
|
| 1279 |
+
|
| 1280 |
+
scaler.scale(loss).backward()
|
| 1281 |
+
scaler.step(optimizer)
|
| 1282 |
+
scaler.update()
|
| 1283 |
+
optimizer.zero_grad(set_to_none=True)
|
| 1284 |
+
|
| 1285 |
+
time_end = time.perf_counter()
|
| 1286 |
+
logger.info(f"elapsed time: {time_end - time_start} [sec] for last {steps - 1} steps")
|