Upload lora-scripts/sd-scripts/library/deepspeed_utils.py with huggingface_hub
Browse files
lora-scripts/sd-scripts/library/deepspeed_utils.py
ADDED
|
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import argparse
|
| 3 |
+
import torch
|
| 4 |
+
from accelerate import DeepSpeedPlugin, Accelerator
|
| 5 |
+
|
| 6 |
+
from .utils import setup_logging
|
| 7 |
+
|
| 8 |
+
setup_logging()
|
| 9 |
+
import logging
|
| 10 |
+
|
| 11 |
+
logger = logging.getLogger(__name__)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def add_deepspeed_arguments(parser: argparse.ArgumentParser):
|
| 15 |
+
# DeepSpeed Arguments. https://huggingface.co/docs/accelerate/usage_guides/deepspeed
|
| 16 |
+
parser.add_argument("--deepspeed", action="store_true", help="enable deepspeed training")
|
| 17 |
+
parser.add_argument("--zero_stage", type=int, default=2, choices=[0, 1, 2, 3], help="Possible options are 0,1,2,3.")
|
| 18 |
+
parser.add_argument(
|
| 19 |
+
"--offload_optimizer_device",
|
| 20 |
+
type=str,
|
| 21 |
+
default=None,
|
| 22 |
+
choices=[None, "cpu", "nvme"],
|
| 23 |
+
help="Possible options are none|cpu|nvme. Only applicable with ZeRO Stages 2 and 3.",
|
| 24 |
+
)
|
| 25 |
+
parser.add_argument(
|
| 26 |
+
"--offload_optimizer_nvme_path",
|
| 27 |
+
type=str,
|
| 28 |
+
default=None,
|
| 29 |
+
help="Possible options are /nvme|/local_nvme. Only applicable with ZeRO Stage 3.",
|
| 30 |
+
)
|
| 31 |
+
parser.add_argument(
|
| 32 |
+
"--offload_param_device",
|
| 33 |
+
type=str,
|
| 34 |
+
default=None,
|
| 35 |
+
choices=[None, "cpu", "nvme"],
|
| 36 |
+
help="Possible options are none|cpu|nvme. Only applicable with ZeRO Stage 3.",
|
| 37 |
+
)
|
| 38 |
+
parser.add_argument(
|
| 39 |
+
"--offload_param_nvme_path",
|
| 40 |
+
type=str,
|
| 41 |
+
default=None,
|
| 42 |
+
help="Possible options are /nvme|/local_nvme. Only applicable with ZeRO Stage 3.",
|
| 43 |
+
)
|
| 44 |
+
parser.add_argument(
|
| 45 |
+
"--zero3_init_flag",
|
| 46 |
+
action="store_true",
|
| 47 |
+
help="Flag to indicate whether to enable `deepspeed.zero.Init` for constructing massive models."
|
| 48 |
+
"Only applicable with ZeRO Stage-3.",
|
| 49 |
+
)
|
| 50 |
+
parser.add_argument(
|
| 51 |
+
"--zero3_save_16bit_model",
|
| 52 |
+
action="store_true",
|
| 53 |
+
help="Flag to indicate whether to save 16-bit model. Only applicable with ZeRO Stage-3.",
|
| 54 |
+
)
|
| 55 |
+
parser.add_argument(
|
| 56 |
+
"--fp16_master_weights_and_gradients",
|
| 57 |
+
action="store_true",
|
| 58 |
+
help="fp16_master_and_gradients requires optimizer to support keeping fp16 master and gradients while keeping the optimizer states in fp32.",
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def prepare_deepspeed_args(args: argparse.Namespace):
|
| 63 |
+
if not args.deepspeed:
|
| 64 |
+
return
|
| 65 |
+
|
| 66 |
+
# To avoid RuntimeError: DataLoader worker exited unexpectedly with exit code 1.
|
| 67 |
+
args.max_data_loader_n_workers = 1
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def prepare_deepspeed_plugin(args: argparse.Namespace):
|
| 71 |
+
if not args.deepspeed:
|
| 72 |
+
return None
|
| 73 |
+
|
| 74 |
+
try:
|
| 75 |
+
import deepspeed
|
| 76 |
+
except ImportError as e:
|
| 77 |
+
logger.error(
|
| 78 |
+
"deepspeed is not installed. please install deepspeed in your environment with following command. DS_BUILD_OPS=0 pip install deepspeed"
|
| 79 |
+
)
|
| 80 |
+
exit(1)
|
| 81 |
+
|
| 82 |
+
deepspeed_plugin = DeepSpeedPlugin(
|
| 83 |
+
zero_stage=args.zero_stage,
|
| 84 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
| 85 |
+
gradient_clipping=args.max_grad_norm,
|
| 86 |
+
offload_optimizer_device=args.offload_optimizer_device,
|
| 87 |
+
offload_optimizer_nvme_path=args.offload_optimizer_nvme_path,
|
| 88 |
+
offload_param_device=args.offload_param_device,
|
| 89 |
+
offload_param_nvme_path=args.offload_param_nvme_path,
|
| 90 |
+
zero3_init_flag=args.zero3_init_flag,
|
| 91 |
+
zero3_save_16bit_model=args.zero3_save_16bit_model,
|
| 92 |
+
)
|
| 93 |
+
deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"] = args.train_batch_size
|
| 94 |
+
deepspeed_plugin.deepspeed_config["train_batch_size"] = (
|
| 95 |
+
args.train_batch_size * args.gradient_accumulation_steps * int(os.environ["WORLD_SIZE"])
|
| 96 |
+
)
|
| 97 |
+
deepspeed_plugin.set_mixed_precision(args.mixed_precision)
|
| 98 |
+
if args.mixed_precision.lower() == "fp16":
|
| 99 |
+
deepspeed_plugin.deepspeed_config["fp16"]["initial_scale_power"] = 0 # preventing overflow.
|
| 100 |
+
if args.full_fp16 or args.fp16_master_weights_and_gradients:
|
| 101 |
+
if args.offload_optimizer_device == "cpu" and args.zero_stage == 2:
|
| 102 |
+
deepspeed_plugin.deepspeed_config["fp16"]["fp16_master_weights_and_grads"] = True
|
| 103 |
+
logger.info("[DeepSpeed] full fp16 enable.")
|
| 104 |
+
else:
|
| 105 |
+
logger.info(
|
| 106 |
+
"[DeepSpeed]full fp16, fp16_master_weights_and_grads currently only supported using ZeRO-Offload with DeepSpeedCPUAdam on ZeRO-2 stage."
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
if args.offload_optimizer_device is not None:
|
| 110 |
+
logger.info("[DeepSpeed] start to manually build cpu_adam.")
|
| 111 |
+
deepspeed.ops.op_builder.CPUAdamBuilder().load()
|
| 112 |
+
logger.info("[DeepSpeed] building cpu_adam done.")
|
| 113 |
+
|
| 114 |
+
return deepspeed_plugin
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
# Accelerate library does not support multiple models for deepspeed. So, we need to wrap multiple models into a single model.
|
| 118 |
+
def prepare_deepspeed_model(args: argparse.Namespace, **models):
|
| 119 |
+
# remove None from models
|
| 120 |
+
models = {k: v for k, v in models.items() if v is not None}
|
| 121 |
+
|
| 122 |
+
class DeepSpeedWrapper(torch.nn.Module):
|
| 123 |
+
def __init__(self, **kw_models) -> None:
|
| 124 |
+
super().__init__()
|
| 125 |
+
self.models = torch.nn.ModuleDict()
|
| 126 |
+
|
| 127 |
+
for key, model in kw_models.items():
|
| 128 |
+
if isinstance(model, list):
|
| 129 |
+
model = torch.nn.ModuleList(model)
|
| 130 |
+
assert isinstance(
|
| 131 |
+
model, torch.nn.Module
|
| 132 |
+
), f"model must be an instance of torch.nn.Module, but got {key} is {type(model)}"
|
| 133 |
+
self.models.update(torch.nn.ModuleDict({key: model}))
|
| 134 |
+
|
| 135 |
+
def get_models(self):
|
| 136 |
+
return self.models
|
| 137 |
+
|
| 138 |
+
ds_model = DeepSpeedWrapper(**models)
|
| 139 |
+
return ds_model
|