Upload lora-scripts/sd-scripts/library/ipex/attention.py with huggingface_hub
Browse files
lora-scripts/sd-scripts/library/ipex/attention.py
ADDED
|
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
|
| 4 |
+
from functools import cache
|
| 5 |
+
|
| 6 |
+
# pylint: disable=protected-access, missing-function-docstring, line-too-long
|
| 7 |
+
|
| 8 |
+
# ARC GPUs can't allocate more than 4GB to a single block so we slice the attetion layers
|
| 9 |
+
|
| 10 |
+
sdpa_slice_trigger_rate = float(os.environ.get('IPEX_SDPA_SLICE_TRIGGER_RATE', 4))
|
| 11 |
+
attention_slice_rate = float(os.environ.get('IPEX_ATTENTION_SLICE_RATE', 4))
|
| 12 |
+
|
| 13 |
+
# Find something divisible with the input_tokens
|
| 14 |
+
@cache
|
| 15 |
+
def find_slice_size(slice_size, slice_block_size):
|
| 16 |
+
while (slice_size * slice_block_size) > attention_slice_rate:
|
| 17 |
+
slice_size = slice_size // 2
|
| 18 |
+
if slice_size <= 1:
|
| 19 |
+
slice_size = 1
|
| 20 |
+
break
|
| 21 |
+
return slice_size
|
| 22 |
+
|
| 23 |
+
# Find slice sizes for SDPA
|
| 24 |
+
@cache
|
| 25 |
+
def find_sdpa_slice_sizes(query_shape, query_element_size):
|
| 26 |
+
if len(query_shape) == 3:
|
| 27 |
+
batch_size_attention, query_tokens, shape_three = query_shape
|
| 28 |
+
shape_four = 1
|
| 29 |
+
else:
|
| 30 |
+
batch_size_attention, query_tokens, shape_three, shape_four = query_shape
|
| 31 |
+
|
| 32 |
+
slice_block_size = query_tokens * shape_three * shape_four / 1024 / 1024 * query_element_size
|
| 33 |
+
block_size = batch_size_attention * slice_block_size
|
| 34 |
+
|
| 35 |
+
split_slice_size = batch_size_attention
|
| 36 |
+
split_2_slice_size = query_tokens
|
| 37 |
+
split_3_slice_size = shape_three
|
| 38 |
+
|
| 39 |
+
do_split = False
|
| 40 |
+
do_split_2 = False
|
| 41 |
+
do_split_3 = False
|
| 42 |
+
|
| 43 |
+
if block_size > sdpa_slice_trigger_rate:
|
| 44 |
+
do_split = True
|
| 45 |
+
split_slice_size = find_slice_size(split_slice_size, slice_block_size)
|
| 46 |
+
if split_slice_size * slice_block_size > attention_slice_rate:
|
| 47 |
+
slice_2_block_size = split_slice_size * shape_three * shape_four / 1024 / 1024 * query_element_size
|
| 48 |
+
do_split_2 = True
|
| 49 |
+
split_2_slice_size = find_slice_size(split_2_slice_size, slice_2_block_size)
|
| 50 |
+
if split_2_slice_size * slice_2_block_size > attention_slice_rate:
|
| 51 |
+
slice_3_block_size = split_slice_size * split_2_slice_size * shape_four / 1024 / 1024 * query_element_size
|
| 52 |
+
do_split_3 = True
|
| 53 |
+
split_3_slice_size = find_slice_size(split_3_slice_size, slice_3_block_size)
|
| 54 |
+
|
| 55 |
+
return do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size
|
| 56 |
+
|
| 57 |
+
# Find slice sizes for BMM
|
| 58 |
+
@cache
|
| 59 |
+
def find_bmm_slice_sizes(input_shape, input_element_size, mat2_shape):
|
| 60 |
+
batch_size_attention, input_tokens, mat2_atten_shape = input_shape[0], input_shape[1], mat2_shape[2]
|
| 61 |
+
slice_block_size = input_tokens * mat2_atten_shape / 1024 / 1024 * input_element_size
|
| 62 |
+
block_size = batch_size_attention * slice_block_size
|
| 63 |
+
|
| 64 |
+
split_slice_size = batch_size_attention
|
| 65 |
+
split_2_slice_size = input_tokens
|
| 66 |
+
split_3_slice_size = mat2_atten_shape
|
| 67 |
+
|
| 68 |
+
do_split = False
|
| 69 |
+
do_split_2 = False
|
| 70 |
+
do_split_3 = False
|
| 71 |
+
|
| 72 |
+
if block_size > attention_slice_rate:
|
| 73 |
+
do_split = True
|
| 74 |
+
split_slice_size = find_slice_size(split_slice_size, slice_block_size)
|
| 75 |
+
if split_slice_size * slice_block_size > attention_slice_rate:
|
| 76 |
+
slice_2_block_size = split_slice_size * mat2_atten_shape / 1024 / 1024 * input_element_size
|
| 77 |
+
do_split_2 = True
|
| 78 |
+
split_2_slice_size = find_slice_size(split_2_slice_size, slice_2_block_size)
|
| 79 |
+
if split_2_slice_size * slice_2_block_size > attention_slice_rate:
|
| 80 |
+
slice_3_block_size = split_slice_size * split_2_slice_size / 1024 / 1024 * input_element_size
|
| 81 |
+
do_split_3 = True
|
| 82 |
+
split_3_slice_size = find_slice_size(split_3_slice_size, slice_3_block_size)
|
| 83 |
+
|
| 84 |
+
return do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
original_torch_bmm = torch.bmm
|
| 88 |
+
def torch_bmm_32_bit(input, mat2, *, out=None):
|
| 89 |
+
if input.device.type != "xpu":
|
| 90 |
+
return original_torch_bmm(input, mat2, out=out)
|
| 91 |
+
do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size = find_bmm_slice_sizes(input.shape, input.element_size(), mat2.shape)
|
| 92 |
+
|
| 93 |
+
# Slice BMM
|
| 94 |
+
if do_split:
|
| 95 |
+
batch_size_attention, input_tokens, mat2_atten_shape = input.shape[0], input.shape[1], mat2.shape[2]
|
| 96 |
+
hidden_states = torch.zeros(input.shape[0], input.shape[1], mat2.shape[2], device=input.device, dtype=input.dtype)
|
| 97 |
+
for i in range(batch_size_attention // split_slice_size):
|
| 98 |
+
start_idx = i * split_slice_size
|
| 99 |
+
end_idx = (i + 1) * split_slice_size
|
| 100 |
+
if do_split_2:
|
| 101 |
+
for i2 in range(input_tokens // split_2_slice_size): # pylint: disable=invalid-name
|
| 102 |
+
start_idx_2 = i2 * split_2_slice_size
|
| 103 |
+
end_idx_2 = (i2 + 1) * split_2_slice_size
|
| 104 |
+
if do_split_3:
|
| 105 |
+
for i3 in range(mat2_atten_shape // split_3_slice_size): # pylint: disable=invalid-name
|
| 106 |
+
start_idx_3 = i3 * split_3_slice_size
|
| 107 |
+
end_idx_3 = (i3 + 1) * split_3_slice_size
|
| 108 |
+
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] = original_torch_bmm(
|
| 109 |
+
input[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3],
|
| 110 |
+
mat2[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3],
|
| 111 |
+
out=out
|
| 112 |
+
)
|
| 113 |
+
else:
|
| 114 |
+
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = original_torch_bmm(
|
| 115 |
+
input[start_idx:end_idx, start_idx_2:end_idx_2],
|
| 116 |
+
mat2[start_idx:end_idx, start_idx_2:end_idx_2],
|
| 117 |
+
out=out
|
| 118 |
+
)
|
| 119 |
+
else:
|
| 120 |
+
hidden_states[start_idx:end_idx] = original_torch_bmm(
|
| 121 |
+
input[start_idx:end_idx],
|
| 122 |
+
mat2[start_idx:end_idx],
|
| 123 |
+
out=out
|
| 124 |
+
)
|
| 125 |
+
torch.xpu.synchronize(input.device)
|
| 126 |
+
else:
|
| 127 |
+
return original_torch_bmm(input, mat2, out=out)
|
| 128 |
+
return hidden_states
|
| 129 |
+
|
| 130 |
+
original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention
|
| 131 |
+
def scaled_dot_product_attention_32_bit(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, **kwargs):
|
| 132 |
+
if query.device.type != "xpu":
|
| 133 |
+
return original_scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal, **kwargs)
|
| 134 |
+
do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size = find_sdpa_slice_sizes(query.shape, query.element_size())
|
| 135 |
+
|
| 136 |
+
# Slice SDPA
|
| 137 |
+
if do_split:
|
| 138 |
+
batch_size_attention, query_tokens, shape_three = query.shape[0], query.shape[1], query.shape[2]
|
| 139 |
+
hidden_states = torch.zeros(query.shape, device=query.device, dtype=query.dtype)
|
| 140 |
+
for i in range(batch_size_attention // split_slice_size):
|
| 141 |
+
start_idx = i * split_slice_size
|
| 142 |
+
end_idx = (i + 1) * split_slice_size
|
| 143 |
+
if do_split_2:
|
| 144 |
+
for i2 in range(query_tokens // split_2_slice_size): # pylint: disable=invalid-name
|
| 145 |
+
start_idx_2 = i2 * split_2_slice_size
|
| 146 |
+
end_idx_2 = (i2 + 1) * split_2_slice_size
|
| 147 |
+
if do_split_3:
|
| 148 |
+
for i3 in range(shape_three // split_3_slice_size): # pylint: disable=invalid-name
|
| 149 |
+
start_idx_3 = i3 * split_3_slice_size
|
| 150 |
+
end_idx_3 = (i3 + 1) * split_3_slice_size
|
| 151 |
+
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] = original_scaled_dot_product_attention(
|
| 152 |
+
query[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3],
|
| 153 |
+
key[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3],
|
| 154 |
+
value[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3],
|
| 155 |
+
attn_mask=attn_mask[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] if attn_mask is not None else attn_mask,
|
| 156 |
+
dropout_p=dropout_p, is_causal=is_causal, **kwargs
|
| 157 |
+
)
|
| 158 |
+
else:
|
| 159 |
+
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = original_scaled_dot_product_attention(
|
| 160 |
+
query[start_idx:end_idx, start_idx_2:end_idx_2],
|
| 161 |
+
key[start_idx:end_idx, start_idx_2:end_idx_2],
|
| 162 |
+
value[start_idx:end_idx, start_idx_2:end_idx_2],
|
| 163 |
+
attn_mask=attn_mask[start_idx:end_idx, start_idx_2:end_idx_2] if attn_mask is not None else attn_mask,
|
| 164 |
+
dropout_p=dropout_p, is_causal=is_causal, **kwargs
|
| 165 |
+
)
|
| 166 |
+
else:
|
| 167 |
+
hidden_states[start_idx:end_idx] = original_scaled_dot_product_attention(
|
| 168 |
+
query[start_idx:end_idx],
|
| 169 |
+
key[start_idx:end_idx],
|
| 170 |
+
value[start_idx:end_idx],
|
| 171 |
+
attn_mask=attn_mask[start_idx:end_idx] if attn_mask is not None else attn_mask,
|
| 172 |
+
dropout_p=dropout_p, is_causal=is_causal, **kwargs
|
| 173 |
+
)
|
| 174 |
+
torch.xpu.synchronize(query.device)
|
| 175 |
+
else:
|
| 176 |
+
return original_scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal, **kwargs)
|
| 177 |
+
return hidden_states
|