Upload lora-scripts/sd-scripts/tools/original_control_net.py with huggingface_hub
Browse files
lora-scripts/sd-scripts/tools/original_control_net.py
ADDED
|
@@ -0,0 +1,353 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, NamedTuple, Any
|
| 2 |
+
import numpy as np
|
| 3 |
+
import cv2
|
| 4 |
+
import torch
|
| 5 |
+
from safetensors.torch import load_file
|
| 6 |
+
|
| 7 |
+
from library.original_unet import UNet2DConditionModel, SampleOutput
|
| 8 |
+
|
| 9 |
+
import library.model_util as model_util
|
| 10 |
+
from library.utils import setup_logging
|
| 11 |
+
setup_logging()
|
| 12 |
+
import logging
|
| 13 |
+
logger = logging.getLogger(__name__)
|
| 14 |
+
|
| 15 |
+
class ControlNetInfo(NamedTuple):
|
| 16 |
+
unet: Any
|
| 17 |
+
net: Any
|
| 18 |
+
prep: Any
|
| 19 |
+
weight: float
|
| 20 |
+
ratio: float
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class ControlNet(torch.nn.Module):
|
| 24 |
+
def __init__(self) -> None:
|
| 25 |
+
super().__init__()
|
| 26 |
+
|
| 27 |
+
# make control model
|
| 28 |
+
self.control_model = torch.nn.Module()
|
| 29 |
+
|
| 30 |
+
dims = [320, 320, 320, 320, 640, 640, 640, 1280, 1280, 1280, 1280, 1280]
|
| 31 |
+
zero_convs = torch.nn.ModuleList()
|
| 32 |
+
for i, dim in enumerate(dims):
|
| 33 |
+
sub_list = torch.nn.ModuleList([torch.nn.Conv2d(dim, dim, 1)])
|
| 34 |
+
zero_convs.append(sub_list)
|
| 35 |
+
self.control_model.add_module("zero_convs", zero_convs)
|
| 36 |
+
|
| 37 |
+
middle_block_out = torch.nn.Conv2d(1280, 1280, 1)
|
| 38 |
+
self.control_model.add_module("middle_block_out", torch.nn.ModuleList([middle_block_out]))
|
| 39 |
+
|
| 40 |
+
dims = [16, 16, 32, 32, 96, 96, 256, 320]
|
| 41 |
+
strides = [1, 1, 2, 1, 2, 1, 2, 1]
|
| 42 |
+
prev_dim = 3
|
| 43 |
+
input_hint_block = torch.nn.Sequential()
|
| 44 |
+
for i, (dim, stride) in enumerate(zip(dims, strides)):
|
| 45 |
+
input_hint_block.append(torch.nn.Conv2d(prev_dim, dim, 3, stride, 1))
|
| 46 |
+
if i < len(dims) - 1:
|
| 47 |
+
input_hint_block.append(torch.nn.SiLU())
|
| 48 |
+
prev_dim = dim
|
| 49 |
+
self.control_model.add_module("input_hint_block", input_hint_block)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def load_control_net(v2, unet, model):
|
| 53 |
+
device = unet.device
|
| 54 |
+
|
| 55 |
+
# control sdからキー変換しつつU-Netに対応する部分のみ取り出し、DiffusersのU-Netに読み込む
|
| 56 |
+
# state dictを読み込む
|
| 57 |
+
logger.info(f"ControlNet: loading control SD model : {model}")
|
| 58 |
+
|
| 59 |
+
if model_util.is_safetensors(model):
|
| 60 |
+
ctrl_sd_sd = load_file(model)
|
| 61 |
+
else:
|
| 62 |
+
ctrl_sd_sd = torch.load(model, map_location="cpu")
|
| 63 |
+
ctrl_sd_sd = ctrl_sd_sd.pop("state_dict", ctrl_sd_sd)
|
| 64 |
+
|
| 65 |
+
# 重みをU-Netに読み込めるようにする。ControlNetはSD版のstate dictなので、それを読み込む
|
| 66 |
+
is_difference = "difference" in ctrl_sd_sd
|
| 67 |
+
logger.info(f"ControlNet: loading difference: {is_difference}")
|
| 68 |
+
|
| 69 |
+
# ControlNetには存在しないキーがあるので、まず現在のU-NetでSD版の全keyを作っておく
|
| 70 |
+
# またTransfer Controlの元weightとなる
|
| 71 |
+
ctrl_unet_sd_sd = model_util.convert_unet_state_dict_to_sd(v2, unet.state_dict())
|
| 72 |
+
|
| 73 |
+
# 元のU-Netに影響しないようにコピーする。またprefixが付いていないので付ける
|
| 74 |
+
for key in list(ctrl_unet_sd_sd.keys()):
|
| 75 |
+
ctrl_unet_sd_sd["model.diffusion_model." + key] = ctrl_unet_sd_sd.pop(key).clone()
|
| 76 |
+
|
| 77 |
+
zero_conv_sd = {}
|
| 78 |
+
for key in list(ctrl_sd_sd.keys()):
|
| 79 |
+
if key.startswith("control_"):
|
| 80 |
+
unet_key = "model.diffusion_" + key[len("control_") :]
|
| 81 |
+
if unet_key not in ctrl_unet_sd_sd: # zero conv
|
| 82 |
+
zero_conv_sd[key] = ctrl_sd_sd[key]
|
| 83 |
+
continue
|
| 84 |
+
if is_difference: # Transfer Control
|
| 85 |
+
ctrl_unet_sd_sd[unet_key] += ctrl_sd_sd[key].to(device, dtype=unet.dtype)
|
| 86 |
+
else:
|
| 87 |
+
ctrl_unet_sd_sd[unet_key] = ctrl_sd_sd[key].to(device, dtype=unet.dtype)
|
| 88 |
+
|
| 89 |
+
unet_config = model_util.create_unet_diffusers_config(v2)
|
| 90 |
+
ctrl_unet_du_sd = model_util.convert_ldm_unet_checkpoint(v2, ctrl_unet_sd_sd, unet_config) # DiffUsers版ControlNetのstate dict
|
| 91 |
+
|
| 92 |
+
# ControlNetのU-Netを作成する
|
| 93 |
+
ctrl_unet = UNet2DConditionModel(**unet_config)
|
| 94 |
+
info = ctrl_unet.load_state_dict(ctrl_unet_du_sd)
|
| 95 |
+
logger.info(f"ControlNet: loading Control U-Net: {info}")
|
| 96 |
+
|
| 97 |
+
# U-Net以外のControlNetを作成する
|
| 98 |
+
# TODO support middle only
|
| 99 |
+
ctrl_net = ControlNet()
|
| 100 |
+
info = ctrl_net.load_state_dict(zero_conv_sd)
|
| 101 |
+
logger.info("ControlNet: loading ControlNet: {info}")
|
| 102 |
+
|
| 103 |
+
ctrl_unet.to(unet.device, dtype=unet.dtype)
|
| 104 |
+
ctrl_net.to(unet.device, dtype=unet.dtype)
|
| 105 |
+
return ctrl_unet, ctrl_net
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def load_preprocess(prep_type: str):
|
| 109 |
+
if prep_type is None or prep_type.lower() == "none":
|
| 110 |
+
return None
|
| 111 |
+
|
| 112 |
+
if prep_type.startswith("canny"):
|
| 113 |
+
args = prep_type.split("_")
|
| 114 |
+
th1 = int(args[1]) if len(args) >= 2 else 63
|
| 115 |
+
th2 = int(args[2]) if len(args) >= 3 else 191
|
| 116 |
+
|
| 117 |
+
def canny(img):
|
| 118 |
+
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
| 119 |
+
return cv2.Canny(img, th1, th2)
|
| 120 |
+
|
| 121 |
+
return canny
|
| 122 |
+
|
| 123 |
+
logger.info(f"Unsupported prep type: {prep_type}")
|
| 124 |
+
return None
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def preprocess_ctrl_net_hint_image(image):
|
| 128 |
+
image = np.array(image).astype(np.float32) / 255.0
|
| 129 |
+
# ControlNetのサンプルはcv2を使っているが、読み込みはGradioなので実はRGBになっている
|
| 130 |
+
# image = image[:, :, ::-1].copy() # rgb to bgr
|
| 131 |
+
image = image[None].transpose(0, 3, 1, 2) # nchw
|
| 132 |
+
image = torch.from_numpy(image)
|
| 133 |
+
return image # 0 to 1
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def get_guided_hints(control_nets: List[ControlNetInfo], num_latent_input, b_size, hints):
|
| 137 |
+
guided_hints = []
|
| 138 |
+
for i, cnet_info in enumerate(control_nets):
|
| 139 |
+
# hintは 1枚目の画像のcnet1, 1枚目の画像のcnet2, 1枚目の画像のcnet3, 2枚目の画像のcnet1, 2枚目の画像のcnet2 ... と並んでいること
|
| 140 |
+
b_hints = []
|
| 141 |
+
if len(hints) == 1: # すべて同じ画像をhintとして使う
|
| 142 |
+
hint = hints[0]
|
| 143 |
+
if cnet_info.prep is not None:
|
| 144 |
+
hint = cnet_info.prep(hint)
|
| 145 |
+
hint = preprocess_ctrl_net_hint_image(hint)
|
| 146 |
+
b_hints = [hint for _ in range(b_size)]
|
| 147 |
+
else:
|
| 148 |
+
for bi in range(b_size):
|
| 149 |
+
hint = hints[(bi * len(control_nets) + i) % len(hints)]
|
| 150 |
+
if cnet_info.prep is not None:
|
| 151 |
+
hint = cnet_info.prep(hint)
|
| 152 |
+
hint = preprocess_ctrl_net_hint_image(hint)
|
| 153 |
+
b_hints.append(hint)
|
| 154 |
+
b_hints = torch.cat(b_hints, dim=0)
|
| 155 |
+
b_hints = b_hints.to(cnet_info.unet.device, dtype=cnet_info.unet.dtype)
|
| 156 |
+
|
| 157 |
+
guided_hint = cnet_info.net.control_model.input_hint_block(b_hints)
|
| 158 |
+
guided_hints.append(guided_hint)
|
| 159 |
+
return guided_hints
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
def call_unet_and_control_net(
|
| 163 |
+
step,
|
| 164 |
+
num_latent_input,
|
| 165 |
+
original_unet,
|
| 166 |
+
control_nets: List[ControlNetInfo],
|
| 167 |
+
guided_hints,
|
| 168 |
+
current_ratio,
|
| 169 |
+
sample,
|
| 170 |
+
timestep,
|
| 171 |
+
encoder_hidden_states,
|
| 172 |
+
encoder_hidden_states_for_control_net,
|
| 173 |
+
):
|
| 174 |
+
# ControlNet
|
| 175 |
+
# 複数のControlNetの場合は、出力をマージするのではなく交互に適用する
|
| 176 |
+
cnet_cnt = len(control_nets)
|
| 177 |
+
cnet_idx = step % cnet_cnt
|
| 178 |
+
cnet_info = control_nets[cnet_idx]
|
| 179 |
+
|
| 180 |
+
# logger.info(current_ratio, cnet_info.prep, cnet_info.weight, cnet_info.ratio)
|
| 181 |
+
if cnet_info.ratio < current_ratio:
|
| 182 |
+
return original_unet(sample, timestep, encoder_hidden_states)
|
| 183 |
+
|
| 184 |
+
guided_hint = guided_hints[cnet_idx]
|
| 185 |
+
|
| 186 |
+
# gradual latent support: match the size of guided_hint to the size of sample
|
| 187 |
+
if guided_hint.shape[-2:] != sample.shape[-2:]:
|
| 188 |
+
# print(f"guided_hint.shape={guided_hint.shape}, sample.shape={sample.shape}")
|
| 189 |
+
org_dtype = guided_hint.dtype
|
| 190 |
+
if org_dtype == torch.bfloat16:
|
| 191 |
+
guided_hint = guided_hint.to(torch.float32)
|
| 192 |
+
guided_hint = torch.nn.functional.interpolate(guided_hint, size=sample.shape[-2:], mode="bicubic")
|
| 193 |
+
if org_dtype == torch.bfloat16:
|
| 194 |
+
guided_hint = guided_hint.to(org_dtype)
|
| 195 |
+
|
| 196 |
+
guided_hint = guided_hint.repeat((num_latent_input, 1, 1, 1))
|
| 197 |
+
outs = unet_forward(
|
| 198 |
+
True, cnet_info.net, cnet_info.unet, guided_hint, None, sample, timestep, encoder_hidden_states_for_control_net
|
| 199 |
+
)
|
| 200 |
+
outs = [o * cnet_info.weight for o in outs]
|
| 201 |
+
|
| 202 |
+
# U-Net
|
| 203 |
+
return unet_forward(False, cnet_info.net, original_unet, None, outs, sample, timestep, encoder_hidden_states)
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
"""
|
| 207 |
+
# これはmergeのバージョン
|
| 208 |
+
# ControlNet
|
| 209 |
+
cnet_outs_list = []
|
| 210 |
+
for i, cnet_info in enumerate(control_nets):
|
| 211 |
+
# logger.info(current_ratio, cnet_info.prep, cnet_info.weight, cnet_info.ratio)
|
| 212 |
+
if cnet_info.ratio < current_ratio:
|
| 213 |
+
continue
|
| 214 |
+
guided_hint = guided_hints[i]
|
| 215 |
+
outs = unet_forward(True, cnet_info.net, cnet_info.unet, guided_hint, None, sample, timestep, encoder_hidden_states)
|
| 216 |
+
for i in range(len(outs)):
|
| 217 |
+
outs[i] *= cnet_info.weight
|
| 218 |
+
|
| 219 |
+
cnet_outs_list.append(outs)
|
| 220 |
+
|
| 221 |
+
count = len(cnet_outs_list)
|
| 222 |
+
if count == 0:
|
| 223 |
+
return original_unet(sample, timestep, encoder_hidden_states)
|
| 224 |
+
|
| 225 |
+
# sum of controlnets
|
| 226 |
+
for i in range(1, count):
|
| 227 |
+
cnet_outs_list[0] += cnet_outs_list[i]
|
| 228 |
+
|
| 229 |
+
# U-Net
|
| 230 |
+
return unet_forward(False, cnet_info.net, original_unet, None, cnet_outs_list[0], sample, timestep, encoder_hidden_states)
|
| 231 |
+
"""
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
def unet_forward(
|
| 235 |
+
is_control_net,
|
| 236 |
+
control_net: ControlNet,
|
| 237 |
+
unet: UNet2DConditionModel,
|
| 238 |
+
guided_hint,
|
| 239 |
+
ctrl_outs,
|
| 240 |
+
sample,
|
| 241 |
+
timestep,
|
| 242 |
+
encoder_hidden_states,
|
| 243 |
+
):
|
| 244 |
+
# copy from UNet2DConditionModel
|
| 245 |
+
default_overall_up_factor = 2**unet.num_upsamplers
|
| 246 |
+
|
| 247 |
+
forward_upsample_size = False
|
| 248 |
+
upsample_size = None
|
| 249 |
+
|
| 250 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
| 251 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
| 252 |
+
forward_upsample_size = True
|
| 253 |
+
|
| 254 |
+
# 1. time
|
| 255 |
+
timesteps = timestep
|
| 256 |
+
if not torch.is_tensor(timesteps):
|
| 257 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
| 258 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
| 259 |
+
is_mps = sample.device.type == "mps"
|
| 260 |
+
if isinstance(timestep, float):
|
| 261 |
+
dtype = torch.float32 if is_mps else torch.float64
|
| 262 |
+
else:
|
| 263 |
+
dtype = torch.int32 if is_mps else torch.int64
|
| 264 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
| 265 |
+
elif len(timesteps.shape) == 0:
|
| 266 |
+
timesteps = timesteps[None].to(sample.device)
|
| 267 |
+
|
| 268 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 269 |
+
timesteps = timesteps.expand(sample.shape[0])
|
| 270 |
+
|
| 271 |
+
t_emb = unet.time_proj(timesteps)
|
| 272 |
+
|
| 273 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
| 274 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
| 275 |
+
# there might be better ways to encapsulate this.
|
| 276 |
+
t_emb = t_emb.to(dtype=unet.dtype)
|
| 277 |
+
emb = unet.time_embedding(t_emb)
|
| 278 |
+
|
| 279 |
+
outs = [] # output of ControlNet
|
| 280 |
+
zc_idx = 0
|
| 281 |
+
|
| 282 |
+
# 2. pre-process
|
| 283 |
+
sample = unet.conv_in(sample)
|
| 284 |
+
if is_control_net:
|
| 285 |
+
sample += guided_hint
|
| 286 |
+
outs.append(control_net.control_model.zero_convs[zc_idx][0](sample)) # , emb, encoder_hidden_states))
|
| 287 |
+
zc_idx += 1
|
| 288 |
+
|
| 289 |
+
# 3. down
|
| 290 |
+
down_block_res_samples = (sample,)
|
| 291 |
+
for downsample_block in unet.down_blocks:
|
| 292 |
+
if downsample_block.has_cross_attention:
|
| 293 |
+
sample, res_samples = downsample_block(
|
| 294 |
+
hidden_states=sample,
|
| 295 |
+
temb=emb,
|
| 296 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 297 |
+
)
|
| 298 |
+
else:
|
| 299 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
| 300 |
+
if is_control_net:
|
| 301 |
+
for rs in res_samples:
|
| 302 |
+
outs.append(control_net.control_model.zero_convs[zc_idx][0](rs)) # , emb, encoder_hidden_states))
|
| 303 |
+
zc_idx += 1
|
| 304 |
+
|
| 305 |
+
down_block_res_samples += res_samples
|
| 306 |
+
|
| 307 |
+
# 4. mid
|
| 308 |
+
sample = unet.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states)
|
| 309 |
+
if is_control_net:
|
| 310 |
+
outs.append(control_net.control_model.middle_block_out[0](sample))
|
| 311 |
+
return outs
|
| 312 |
+
|
| 313 |
+
if not is_control_net:
|
| 314 |
+
sample += ctrl_outs.pop()
|
| 315 |
+
|
| 316 |
+
# 5. up
|
| 317 |
+
for i, upsample_block in enumerate(unet.up_blocks):
|
| 318 |
+
is_final_block = i == len(unet.up_blocks) - 1
|
| 319 |
+
|
| 320 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
| 321 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
| 322 |
+
|
| 323 |
+
if not is_control_net and len(ctrl_outs) > 0:
|
| 324 |
+
res_samples = list(res_samples)
|
| 325 |
+
apply_ctrl_outs = ctrl_outs[-len(res_samples) :]
|
| 326 |
+
ctrl_outs = ctrl_outs[: -len(res_samples)]
|
| 327 |
+
for j in range(len(res_samples)):
|
| 328 |
+
res_samples[j] = res_samples[j] + apply_ctrl_outs[j]
|
| 329 |
+
res_samples = tuple(res_samples)
|
| 330 |
+
|
| 331 |
+
# if we have not reached the final block and need to forward the
|
| 332 |
+
# upsample size, we do it here
|
| 333 |
+
if not is_final_block and forward_upsample_size:
|
| 334 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
| 335 |
+
|
| 336 |
+
if upsample_block.has_cross_attention:
|
| 337 |
+
sample = upsample_block(
|
| 338 |
+
hidden_states=sample,
|
| 339 |
+
temb=emb,
|
| 340 |
+
res_hidden_states_tuple=res_samples,
|
| 341 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 342 |
+
upsample_size=upsample_size,
|
| 343 |
+
)
|
| 344 |
+
else:
|
| 345 |
+
sample = upsample_block(
|
| 346 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
| 347 |
+
)
|
| 348 |
+
# 6. post-process
|
| 349 |
+
sample = unet.conv_norm_out(sample)
|
| 350 |
+
sample = unet.conv_act(sample)
|
| 351 |
+
sample = unet.conv_out(sample)
|
| 352 |
+
|
| 353 |
+
return SampleOutput(sample=sample)
|