Upload lora-scripts/sd-scripts/sdxl_train_network.py with huggingface_hub
Browse files
lora-scripts/sd-scripts/sdxl_train_network.py
ADDED
|
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from library.device_utils import init_ipex, clean_memory_on_device
|
| 5 |
+
init_ipex()
|
| 6 |
+
|
| 7 |
+
from library import sdxl_model_util, sdxl_train_util, train_util
|
| 8 |
+
import train_network
|
| 9 |
+
from library.utils import setup_logging
|
| 10 |
+
setup_logging()
|
| 11 |
+
import logging
|
| 12 |
+
logger = logging.getLogger(__name__)
|
| 13 |
+
|
| 14 |
+
class SdxlNetworkTrainer(train_network.NetworkTrainer):
|
| 15 |
+
def __init__(self):
|
| 16 |
+
super().__init__()
|
| 17 |
+
self.vae_scale_factor = sdxl_model_util.VAE_SCALE_FACTOR
|
| 18 |
+
self.is_sdxl = True
|
| 19 |
+
|
| 20 |
+
def assert_extra_args(self, args, train_dataset_group):
|
| 21 |
+
super().assert_extra_args(args, train_dataset_group)
|
| 22 |
+
sdxl_train_util.verify_sdxl_training_args(args)
|
| 23 |
+
|
| 24 |
+
if args.cache_text_encoder_outputs:
|
| 25 |
+
assert (
|
| 26 |
+
train_dataset_group.is_text_encoder_output_cacheable()
|
| 27 |
+
), "when caching Text Encoder output, either caption_dropout_rate, shuffle_caption, token_warmup_step or caption_tag_dropout_rate cannot be used / Text Encoderの出力をキャッシュするときはcaption_dropout_rate, shuffle_caption, token_warmup_step, caption_tag_dropout_rateは使えません"
|
| 28 |
+
|
| 29 |
+
assert (
|
| 30 |
+
args.network_train_unet_only or not args.cache_text_encoder_outputs
|
| 31 |
+
), "network for Text Encoder cannot be trained with caching Text Encoder outputs / Text Encoderの出力をキャッシュしながらText Encoderのネットワークを学習することはできません"
|
| 32 |
+
|
| 33 |
+
train_dataset_group.verify_bucket_reso_steps(32)
|
| 34 |
+
|
| 35 |
+
def load_target_model(self, args, weight_dtype, accelerator):
|
| 36 |
+
(
|
| 37 |
+
load_stable_diffusion_format,
|
| 38 |
+
text_encoder1,
|
| 39 |
+
text_encoder2,
|
| 40 |
+
vae,
|
| 41 |
+
unet,
|
| 42 |
+
logit_scale,
|
| 43 |
+
ckpt_info,
|
| 44 |
+
) = sdxl_train_util.load_target_model(args, accelerator, sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, weight_dtype)
|
| 45 |
+
|
| 46 |
+
self.load_stable_diffusion_format = load_stable_diffusion_format
|
| 47 |
+
self.logit_scale = logit_scale
|
| 48 |
+
self.ckpt_info = ckpt_info
|
| 49 |
+
|
| 50 |
+
return sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, [text_encoder1, text_encoder2], vae, unet
|
| 51 |
+
|
| 52 |
+
def load_tokenizer(self, args):
|
| 53 |
+
tokenizer = sdxl_train_util.load_tokenizers(args)
|
| 54 |
+
return tokenizer
|
| 55 |
+
|
| 56 |
+
def is_text_encoder_outputs_cached(self, args):
|
| 57 |
+
return args.cache_text_encoder_outputs
|
| 58 |
+
|
| 59 |
+
def cache_text_encoder_outputs_if_needed(
|
| 60 |
+
self, args, accelerator, unet, vae, tokenizers, text_encoders, dataset: train_util.DatasetGroup, weight_dtype
|
| 61 |
+
):
|
| 62 |
+
if args.cache_text_encoder_outputs:
|
| 63 |
+
if not args.lowram:
|
| 64 |
+
# メモリ消費を減らす
|
| 65 |
+
logger.info("move vae and unet to cpu to save memory")
|
| 66 |
+
org_vae_device = vae.device
|
| 67 |
+
org_unet_device = unet.device
|
| 68 |
+
vae.to("cpu")
|
| 69 |
+
unet.to("cpu")
|
| 70 |
+
clean_memory_on_device(accelerator.device)
|
| 71 |
+
|
| 72 |
+
# When TE is not be trained, it will not be prepared so we need to use explicit autocast
|
| 73 |
+
with accelerator.autocast():
|
| 74 |
+
dataset.cache_text_encoder_outputs(
|
| 75 |
+
tokenizers,
|
| 76 |
+
text_encoders,
|
| 77 |
+
accelerator.device,
|
| 78 |
+
weight_dtype,
|
| 79 |
+
args.cache_text_encoder_outputs_to_disk,
|
| 80 |
+
accelerator.is_main_process,
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
text_encoders[0].to("cpu", dtype=torch.float32) # Text Encoder doesn't work with fp16 on CPU
|
| 84 |
+
text_encoders[1].to("cpu", dtype=torch.float32)
|
| 85 |
+
clean_memory_on_device(accelerator.device)
|
| 86 |
+
|
| 87 |
+
if not args.lowram:
|
| 88 |
+
logger.info("move vae and unet back to original device")
|
| 89 |
+
vae.to(org_vae_device)
|
| 90 |
+
unet.to(org_unet_device)
|
| 91 |
+
else:
|
| 92 |
+
# Text Encoderから毎回出力を取得するので、GPUに乗せておく
|
| 93 |
+
text_encoders[0].to(accelerator.device, dtype=weight_dtype)
|
| 94 |
+
text_encoders[1].to(accelerator.device, dtype=weight_dtype)
|
| 95 |
+
|
| 96 |
+
def get_text_cond(self, args, accelerator, batch, tokenizers, text_encoders, weight_dtype):
|
| 97 |
+
if "text_encoder_outputs1_list" not in batch or batch["text_encoder_outputs1_list"] is None:
|
| 98 |
+
input_ids1 = batch["input_ids"]
|
| 99 |
+
input_ids2 = batch["input_ids2"]
|
| 100 |
+
with torch.enable_grad():
|
| 101 |
+
# Get the text embedding for conditioning
|
| 102 |
+
# TODO support weighted captions
|
| 103 |
+
# if args.weighted_captions:
|
| 104 |
+
# encoder_hidden_states = get_weighted_text_embeddings(
|
| 105 |
+
# tokenizer,
|
| 106 |
+
# text_encoder,
|
| 107 |
+
# batch["captions"],
|
| 108 |
+
# accelerator.device,
|
| 109 |
+
# args.max_token_length // 75 if args.max_token_length else 1,
|
| 110 |
+
# clip_skip=args.clip_skip,
|
| 111 |
+
# )
|
| 112 |
+
# else:
|
| 113 |
+
input_ids1 = input_ids1.to(accelerator.device)
|
| 114 |
+
input_ids2 = input_ids2.to(accelerator.device)
|
| 115 |
+
encoder_hidden_states1, encoder_hidden_states2, pool2 = train_util.get_hidden_states_sdxl(
|
| 116 |
+
args.max_token_length,
|
| 117 |
+
input_ids1,
|
| 118 |
+
input_ids2,
|
| 119 |
+
tokenizers[0],
|
| 120 |
+
tokenizers[1],
|
| 121 |
+
text_encoders[0],
|
| 122 |
+
text_encoders[1],
|
| 123 |
+
None if not args.full_fp16 else weight_dtype,
|
| 124 |
+
accelerator=accelerator,
|
| 125 |
+
)
|
| 126 |
+
else:
|
| 127 |
+
encoder_hidden_states1 = batch["text_encoder_outputs1_list"].to(accelerator.device).to(weight_dtype)
|
| 128 |
+
encoder_hidden_states2 = batch["text_encoder_outputs2_list"].to(accelerator.device).to(weight_dtype)
|
| 129 |
+
pool2 = batch["text_encoder_pool2_list"].to(accelerator.device).to(weight_dtype)
|
| 130 |
+
|
| 131 |
+
# # verify that the text encoder outputs are correct
|
| 132 |
+
# ehs1, ehs2, p2 = train_util.get_hidden_states_sdxl(
|
| 133 |
+
# args.max_token_length,
|
| 134 |
+
# batch["input_ids"].to(text_encoders[0].device),
|
| 135 |
+
# batch["input_ids2"].to(text_encoders[0].device),
|
| 136 |
+
# tokenizers[0],
|
| 137 |
+
# tokenizers[1],
|
| 138 |
+
# text_encoders[0],
|
| 139 |
+
# text_encoders[1],
|
| 140 |
+
# None if not args.full_fp16 else weight_dtype,
|
| 141 |
+
# )
|
| 142 |
+
# b_size = encoder_hidden_states1.shape[0]
|
| 143 |
+
# assert ((encoder_hidden_states1.to("cpu") - ehs1.to(dtype=weight_dtype)).abs().max() > 1e-2).sum() <= b_size * 2
|
| 144 |
+
# assert ((encoder_hidden_states2.to("cpu") - ehs2.to(dtype=weight_dtype)).abs().max() > 1e-2).sum() <= b_size * 2
|
| 145 |
+
# assert ((pool2.to("cpu") - p2.to(dtype=weight_dtype)).abs().max() > 1e-2).sum() <= b_size * 2
|
| 146 |
+
# logger.info("text encoder outputs verified")
|
| 147 |
+
|
| 148 |
+
return encoder_hidden_states1, encoder_hidden_states2, pool2
|
| 149 |
+
|
| 150 |
+
def call_unet(self, args, accelerator, unet, noisy_latents, timesteps, text_conds, batch, weight_dtype):
|
| 151 |
+
noisy_latents = noisy_latents.to(weight_dtype) # TODO check why noisy_latents is not weight_dtype
|
| 152 |
+
|
| 153 |
+
# get size embeddings
|
| 154 |
+
orig_size = batch["original_sizes_hw"]
|
| 155 |
+
crop_size = batch["crop_top_lefts"]
|
| 156 |
+
target_size = batch["target_sizes_hw"]
|
| 157 |
+
embs = sdxl_train_util.get_size_embeddings(orig_size, crop_size, target_size, accelerator.device).to(weight_dtype)
|
| 158 |
+
|
| 159 |
+
# concat embeddings
|
| 160 |
+
encoder_hidden_states1, encoder_hidden_states2, pool2 = text_conds
|
| 161 |
+
vector_embedding = torch.cat([pool2, embs], dim=1).to(weight_dtype)
|
| 162 |
+
text_embedding = torch.cat([encoder_hidden_states1, encoder_hidden_states2], dim=2).to(weight_dtype)
|
| 163 |
+
|
| 164 |
+
noise_pred = unet(noisy_latents, timesteps, text_embedding, vector_embedding)
|
| 165 |
+
return noise_pred
|
| 166 |
+
|
| 167 |
+
def sample_images(self, accelerator, args, epoch, global_step, device, vae, tokenizer, text_encoder, unet):
|
| 168 |
+
sdxl_train_util.sample_images(accelerator, args, epoch, global_step, device, vae, tokenizer, text_encoder, unet)
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
def setup_parser() -> argparse.ArgumentParser:
|
| 172 |
+
parser = train_network.setup_parser()
|
| 173 |
+
sdxl_train_util.add_sdxl_training_arguments(parser)
|
| 174 |
+
return parser
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
if __name__ == "__main__":
|
| 178 |
+
parser = setup_parser()
|
| 179 |
+
|
| 180 |
+
args = parser.parse_args()
|
| 181 |
+
train_util.verify_command_line_training_args(args)
|
| 182 |
+
args = train_util.read_config_from_file(args, parser)
|
| 183 |
+
|
| 184 |
+
trainer = SdxlNetworkTrainer()
|
| 185 |
+
trainer.train(args)
|