Upload lora-scripts/sd-scripts/finetune/prepare_buckets_latents.py with huggingface_hub
Browse files
lora-scripts/sd-scripts/finetune/prepare_buckets_latents.py
ADDED
|
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import os
|
| 3 |
+
import json
|
| 4 |
+
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from typing import List
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
import numpy as np
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import cv2
|
| 11 |
+
|
| 12 |
+
import torch
|
| 13 |
+
from library.device_utils import init_ipex, get_preferred_device
|
| 14 |
+
init_ipex()
|
| 15 |
+
|
| 16 |
+
from torchvision import transforms
|
| 17 |
+
|
| 18 |
+
import library.model_util as model_util
|
| 19 |
+
import library.train_util as train_util
|
| 20 |
+
from library.utils import setup_logging
|
| 21 |
+
setup_logging()
|
| 22 |
+
import logging
|
| 23 |
+
logger = logging.getLogger(__name__)
|
| 24 |
+
|
| 25 |
+
DEVICE = get_preferred_device()
|
| 26 |
+
|
| 27 |
+
IMAGE_TRANSFORMS = transforms.Compose(
|
| 28 |
+
[
|
| 29 |
+
transforms.ToTensor(),
|
| 30 |
+
transforms.Normalize([0.5], [0.5]),
|
| 31 |
+
]
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def collate_fn_remove_corrupted(batch):
|
| 36 |
+
"""Collate function that allows to remove corrupted examples in the
|
| 37 |
+
dataloader. It expects that the dataloader returns 'None' when that occurs.
|
| 38 |
+
The 'None's in the batch are removed.
|
| 39 |
+
"""
|
| 40 |
+
# Filter out all the Nones (corrupted examples)
|
| 41 |
+
batch = list(filter(lambda x: x is not None, batch))
|
| 42 |
+
return batch
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def get_npz_filename(data_dir, image_key, is_full_path, recursive):
|
| 46 |
+
if is_full_path:
|
| 47 |
+
base_name = os.path.splitext(os.path.basename(image_key))[0]
|
| 48 |
+
relative_path = os.path.relpath(os.path.dirname(image_key), data_dir)
|
| 49 |
+
else:
|
| 50 |
+
base_name = image_key
|
| 51 |
+
relative_path = ""
|
| 52 |
+
|
| 53 |
+
if recursive and relative_path:
|
| 54 |
+
return os.path.join(data_dir, relative_path, base_name) + ".npz"
|
| 55 |
+
else:
|
| 56 |
+
return os.path.join(data_dir, base_name) + ".npz"
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def main(args):
|
| 60 |
+
# assert args.bucket_reso_steps % 8 == 0, f"bucket_reso_steps must be divisible by 8 / bucket_reso_stepは8で割り切れる必要があります"
|
| 61 |
+
if args.bucket_reso_steps % 8 > 0:
|
| 62 |
+
logger.warning(f"resolution of buckets in training time is a multiple of 8 / 学習時の各bucketの解像度は8単位になります")
|
| 63 |
+
if args.bucket_reso_steps % 32 > 0:
|
| 64 |
+
logger.warning(
|
| 65 |
+
f"WARNING: bucket_reso_steps is not divisible by 32. It is not working with SDXL / bucket_reso_stepsが32で割り切れません。SDXLでは動作しません"
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
train_data_dir_path = Path(args.train_data_dir)
|
| 69 |
+
image_paths: List[str] = [str(p) for p in train_util.glob_images_pathlib(train_data_dir_path, args.recursive)]
|
| 70 |
+
logger.info(f"found {len(image_paths)} images.")
|
| 71 |
+
|
| 72 |
+
if os.path.exists(args.in_json):
|
| 73 |
+
logger.info(f"loading existing metadata: {args.in_json}")
|
| 74 |
+
with open(args.in_json, "rt", encoding="utf-8") as f:
|
| 75 |
+
metadata = json.load(f)
|
| 76 |
+
else:
|
| 77 |
+
logger.error(f"no metadata / メタデータファイルがありません: {args.in_json}")
|
| 78 |
+
return
|
| 79 |
+
|
| 80 |
+
weight_dtype = torch.float32
|
| 81 |
+
if args.mixed_precision == "fp16":
|
| 82 |
+
weight_dtype = torch.float16
|
| 83 |
+
elif args.mixed_precision == "bf16":
|
| 84 |
+
weight_dtype = torch.bfloat16
|
| 85 |
+
|
| 86 |
+
vae = model_util.load_vae(args.model_name_or_path, weight_dtype)
|
| 87 |
+
vae.eval()
|
| 88 |
+
vae.to(DEVICE, dtype=weight_dtype)
|
| 89 |
+
|
| 90 |
+
# bucketのサイズを計算する
|
| 91 |
+
max_reso = tuple([int(t) for t in args.max_resolution.split(",")])
|
| 92 |
+
assert len(max_reso) == 2, f"illegal resolution (not 'width,height') / 画像サイズに誤りがあります。'幅,高さ'で指定してください: {args.max_resolution}"
|
| 93 |
+
|
| 94 |
+
bucket_manager = train_util.BucketManager(
|
| 95 |
+
args.bucket_no_upscale, max_reso, args.min_bucket_reso, args.max_bucket_reso, args.bucket_reso_steps
|
| 96 |
+
)
|
| 97 |
+
if not args.bucket_no_upscale:
|
| 98 |
+
bucket_manager.make_buckets()
|
| 99 |
+
else:
|
| 100 |
+
logger.warning(
|
| 101 |
+
"min_bucket_reso and max_bucket_reso are ignored if bucket_no_upscale is set, because bucket reso is defined by image size automatically / bucket_no_upscaleが指定された場合は、bucketの解像度は画像サイズから自動計算されるため、min_bucket_resoとmax_bucket_resoは無視されます"
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
# 画像をひとつずつ適切なbucketに割り当てながらlatentを計算する
|
| 105 |
+
img_ar_errors = []
|
| 106 |
+
|
| 107 |
+
def process_batch(is_last):
|
| 108 |
+
for bucket in bucket_manager.buckets:
|
| 109 |
+
if (is_last and len(bucket) > 0) or len(bucket) >= args.batch_size:
|
| 110 |
+
train_util.cache_batch_latents(vae, True, bucket, args.flip_aug, False)
|
| 111 |
+
bucket.clear()
|
| 112 |
+
|
| 113 |
+
# 読み込みの高速化のためにDataLoaderを使うオプション
|
| 114 |
+
if args.max_data_loader_n_workers is not None:
|
| 115 |
+
dataset = train_util.ImageLoadingDataset(image_paths)
|
| 116 |
+
data = torch.utils.data.DataLoader(
|
| 117 |
+
dataset,
|
| 118 |
+
batch_size=1,
|
| 119 |
+
shuffle=False,
|
| 120 |
+
num_workers=args.max_data_loader_n_workers,
|
| 121 |
+
collate_fn=collate_fn_remove_corrupted,
|
| 122 |
+
drop_last=False,
|
| 123 |
+
)
|
| 124 |
+
else:
|
| 125 |
+
data = [[(None, ip)] for ip in image_paths]
|
| 126 |
+
|
| 127 |
+
bucket_counts = {}
|
| 128 |
+
for data_entry in tqdm(data, smoothing=0.0):
|
| 129 |
+
if data_entry[0] is None:
|
| 130 |
+
continue
|
| 131 |
+
|
| 132 |
+
img_tensor, image_path = data_entry[0]
|
| 133 |
+
if img_tensor is not None:
|
| 134 |
+
image = transforms.functional.to_pil_image(img_tensor)
|
| 135 |
+
else:
|
| 136 |
+
try:
|
| 137 |
+
image = Image.open(image_path)
|
| 138 |
+
if image.mode != "RGB":
|
| 139 |
+
image = image.convert("RGB")
|
| 140 |
+
except Exception as e:
|
| 141 |
+
logger.error(f"Could not load image path / 画像を読み込めません: {image_path}, error: {e}")
|
| 142 |
+
continue
|
| 143 |
+
|
| 144 |
+
image_key = image_path if args.full_path else os.path.splitext(os.path.basename(image_path))[0]
|
| 145 |
+
if image_key not in metadata:
|
| 146 |
+
metadata[image_key] = {}
|
| 147 |
+
|
| 148 |
+
# 本当はこのあとの部分もDataSetに持っていけば高速化できるがいろいろ大変
|
| 149 |
+
|
| 150 |
+
reso, resized_size, ar_error = bucket_manager.select_bucket(image.width, image.height)
|
| 151 |
+
img_ar_errors.append(abs(ar_error))
|
| 152 |
+
bucket_counts[reso] = bucket_counts.get(reso, 0) + 1
|
| 153 |
+
|
| 154 |
+
# メタデータに記録する解像度はlatent単位とするので、8単位で切り捨て
|
| 155 |
+
metadata[image_key]["train_resolution"] = (reso[0] - reso[0] % 8, reso[1] - reso[1] % 8)
|
| 156 |
+
|
| 157 |
+
if not args.bucket_no_upscale:
|
| 158 |
+
# upscaleを行わないときには、resize後のサイズは、bucketのサイズと、縦横どちらかが同じであることを確認する
|
| 159 |
+
assert (
|
| 160 |
+
resized_size[0] == reso[0] or resized_size[1] == reso[1]
|
| 161 |
+
), f"internal error, resized size not match: {reso}, {resized_size}, {image.width}, {image.height}"
|
| 162 |
+
assert (
|
| 163 |
+
resized_size[0] >= reso[0] and resized_size[1] >= reso[1]
|
| 164 |
+
), f"internal error, resized size too small: {reso}, {resized_size}, {image.width}, {image.height}"
|
| 165 |
+
|
| 166 |
+
assert (
|
| 167 |
+
resized_size[0] >= reso[0] and resized_size[1] >= reso[1]
|
| 168 |
+
), f"internal error resized size is small: {resized_size}, {reso}"
|
| 169 |
+
|
| 170 |
+
# 既に存在するファイルがあればshape等を確認して同じならskipする
|
| 171 |
+
npz_file_name = get_npz_filename(args.train_data_dir, image_key, args.full_path, args.recursive)
|
| 172 |
+
if args.skip_existing:
|
| 173 |
+
if train_util.is_disk_cached_latents_is_expected(reso, npz_file_name, args.flip_aug):
|
| 174 |
+
continue
|
| 175 |
+
|
| 176 |
+
# バッチへ追加
|
| 177 |
+
image_info = train_util.ImageInfo(image_key, 1, "", False, image_path)
|
| 178 |
+
image_info.latents_npz = npz_file_name
|
| 179 |
+
image_info.bucket_reso = reso
|
| 180 |
+
image_info.resized_size = resized_size
|
| 181 |
+
image_info.image = image
|
| 182 |
+
bucket_manager.add_image(reso, image_info)
|
| 183 |
+
|
| 184 |
+
# バッチを推論するか判定して推論する
|
| 185 |
+
process_batch(False)
|
| 186 |
+
|
| 187 |
+
# 残りを処理する
|
| 188 |
+
process_batch(True)
|
| 189 |
+
|
| 190 |
+
bucket_manager.sort()
|
| 191 |
+
for i, reso in enumerate(bucket_manager.resos):
|
| 192 |
+
count = bucket_counts.get(reso, 0)
|
| 193 |
+
if count > 0:
|
| 194 |
+
logger.info(f"bucket {i} {reso}: {count}")
|
| 195 |
+
img_ar_errors = np.array(img_ar_errors)
|
| 196 |
+
logger.info(f"mean ar error: {np.mean(img_ar_errors)}")
|
| 197 |
+
|
| 198 |
+
# metadataを書き出して終わり
|
| 199 |
+
logger.info(f"writing metadata: {args.out_json}")
|
| 200 |
+
with open(args.out_json, "wt", encoding="utf-8") as f:
|
| 201 |
+
json.dump(metadata, f, indent=2)
|
| 202 |
+
logger.info("done!")
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
def setup_parser() -> argparse.ArgumentParser:
|
| 206 |
+
parser = argparse.ArgumentParser()
|
| 207 |
+
parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ")
|
| 208 |
+
parser.add_argument("in_json", type=str, help="metadata file to input / 読み込むメタデータファイル")
|
| 209 |
+
parser.add_argument("out_json", type=str, help="metadata file to output / メタデータファイル書き出し先")
|
| 210 |
+
parser.add_argument("model_name_or_path", type=str, help="model name or path to encode latents / latentを取得するためのモデル")
|
| 211 |
+
parser.add_argument("--v2", action="store_true", help="not used (for backward compatibility) / 使用されません(互換性のため残してあります)")
|
| 212 |
+
parser.add_argument("--batch_size", type=int, default=1, help="batch size in inference / 推論時のバッチサイズ")
|
| 213 |
+
parser.add_argument(
|
| 214 |
+
"--max_data_loader_n_workers",
|
| 215 |
+
type=int,
|
| 216 |
+
default=None,
|
| 217 |
+
help="enable image reading by DataLoader with this number of workers (faster) / DataLoaderによる画像読み込みを有効にしてこのワーカー数を適用する(読み込みを高速化)",
|
| 218 |
+
)
|
| 219 |
+
parser.add_argument(
|
| 220 |
+
"--max_resolution",
|
| 221 |
+
type=str,
|
| 222 |
+
default="512,512",
|
| 223 |
+
help="max resolution in fine tuning (width,height) / fine tuning時の最大画像サイズ 「幅,高さ」(使用メモリ量に関係します)",
|
| 224 |
+
)
|
| 225 |
+
parser.add_argument("--min_bucket_reso", type=int, default=256, help="minimum resolution for buckets / bucketの最小解像度")
|
| 226 |
+
parser.add_argument("--max_bucket_reso", type=int, default=1024, help="maximum resolution for buckets / bucketの最大解像度")
|
| 227 |
+
parser.add_argument(
|
| 228 |
+
"--bucket_reso_steps",
|
| 229 |
+
type=int,
|
| 230 |
+
default=64,
|
| 231 |
+
help="steps of resolution for buckets, divisible by 8 is recommended / bucketの解像度の単位、8で割り切れる値を推奨します",
|
| 232 |
+
)
|
| 233 |
+
parser.add_argument(
|
| 234 |
+
"--bucket_no_upscale", action="store_true", help="make bucket for each image without upscaling / 画像を拡大せずbucketを作成します"
|
| 235 |
+
)
|
| 236 |
+
parser.add_argument(
|
| 237 |
+
"--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help="use mixed precision / 混合精度を使う場合、その精度"
|
| 238 |
+
)
|
| 239 |
+
parser.add_argument(
|
| 240 |
+
"--full_path",
|
| 241 |
+
action="store_true",
|
| 242 |
+
help="use full path as image-key in metadata (supports multiple directories) / メタデータで画像キーをフルパスにする(複数の学習画像ディレクトリに対応)",
|
| 243 |
+
)
|
| 244 |
+
parser.add_argument(
|
| 245 |
+
"--flip_aug", action="store_true", help="flip augmentation, save latents for flipped images / 左右反転した画像もlatentを取得、保存する"
|
| 246 |
+
)
|
| 247 |
+
parser.add_argument(
|
| 248 |
+
"--skip_existing",
|
| 249 |
+
action="store_true",
|
| 250 |
+
help="skip images if npz already exists (both normal and flipped exists if flip_aug is enabled) / npzが既に存在する画像をスキップする(flip_aug有効時は通常、反転の両方が存在する画像をスキップ)",
|
| 251 |
+
)
|
| 252 |
+
parser.add_argument(
|
| 253 |
+
"--recursive",
|
| 254 |
+
action="store_true",
|
| 255 |
+
help="recursively look for training tags in all child folders of train_data_dir / train_data_dirのすべての子フォルダにある学習タグを再帰的に探す",
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
return parser
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
if __name__ == "__main__":
|
| 262 |
+
parser = setup_parser()
|
| 263 |
+
|
| 264 |
+
args = parser.parse_args()
|
| 265 |
+
main(args)
|