File size: 3,228 Bytes
cb0ccdd 9334a09 cb0ccdd 464b486 9334a09 d6065ea e350427 d6065ea e350427 de89b34 e350427 de89b34 e350427 de89b34 cb0ccdd e350427 cb0ccdd e350427 cb0ccdd 464b486 9334a09 d6065ea 9334a09 de89b34 9334a09 cb0ccdd 9334a09 e350427 66fc144 96a5cb4 306384d 66fc144 430b541 f40ec00 430b541 66fc144 430b541 66fc144 430b541 66fc144 96a5cb4 66fc144 f40ec00 6eb011a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
---
license: mit
dataset_info:
- config_name: pretrain_synthetic_7M
features:
- name: image
dtype: image
- name: SMILES
dtype: string
splits:
- name: train
num_bytes: 115375911760.028
num_examples: 7720468
download_size: 122046202421
dataset_size: 115375911760.028
- config_name: sft_real
features:
- name: image
dtype: image
- name: SMILES
dtype: string
splits:
- name: train
num_bytes: 2479379042.298
num_examples: 91166
download_size: 2416204649
dataset_size: 2479379042.298
- config_name: test_markush_10k
features:
- name: image
dtype: image
- name: SMILES
dtype: string
splits:
- name: train
num_bytes: 228019568
num_examples: 10000
download_size: 233407872
dataset_size: 228019568
- config_name: test_simple_10k
features:
- name: image
dtype: image
- name: SMILES
dtype: string
splits:
- name: train
num_bytes: 291640094
num_examples: 10000
download_size: 292074581
dataset_size: 291640094
- config_name: valid
features:
- name: image
dtype: image
- name: SMILES
dtype: string
splits:
- name: train
num_bytes: 13538058
num_examples: 403
download_size: 13451383
dataset_size: 13538058
configs:
- config_name: pretrain_synthetic_7M
data_files:
- split: train
path: pretrain_synthetic_7M/train-*
- config_name: sft_real
data_files:
- split: train
path: sft_real/train-*
- config_name: test_markush_10k
data_files:
- split: train
path: test_markush_10k/train-*
- config_name: test_simple_10k
data_files:
- split: train
path: test_simple_10k/train-*
- config_name: valid
data_files:
- split: train
path: valid/train-*
tags:
- chemistry
---
# MolParser-7M
**Anonymous Open Source now**
This repo provides the training data and evaluation data for MolParser, proposed in paper *“MolParser: End-to-end Visual Recognition of Molecule Structures in the Wild“* (ICCV2025 under review)
MolParser-7M contains nearly 8 million paired image-SMILES data. It should be noted that the caption of image is our extended-SMILES format, which suggested in our paper.
* **MolParser-Pretrain**: More than 7.7M synthetic training data in `pretrain_synthetic_7M` subset;
* **MolParser-SFT [WIP]**: Nearly 400k samples for fine-tuning stage in `sft_real` subset. (We are organizing an OCSR competition based on MolParser-7M, so we have reserved part of the MolParser-SFT data for the competition. Stay tuned!)
* **MolParser-Val**: A small validation set carefully selected in-the-wild in `valid` subset. It can be used to quickly valid the model ability during the training process;
* **WildMol Benchmark**: 20k molecule structure images cropped from real patents or paper, `test_simple_10k`(WildMol-10k)subset and `test_markush_10k`(WildMol-10k-M)subset;
As the paper is still **under review**, this data is provided **anonymously**. More information will be provided after the paper has been accepted.
In the future, we will continue to re-clean this dataset, open-source more data, update model checkpoints, refresh the benchmark results, and release the training code.
[**Anonymous Demo: Click Here**](http://101.126.35.171:50008/) |