Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
French
ArXiv:
Libraries:
Datasets
Dask
License:
LukasHug ahmad21omar commited on
Commit
221480f
·
verified ·
1 Parent(s): 795fa2c

Update README.md (#3)

Browse files

- Update README.md (f7c74eb63a5437378f0ad753fec69c598f4c322f)


Co-authored-by: Ahmad Omar <[email protected]>

Files changed (1) hide show
  1. README.md +418 -415
README.md CHANGED
@@ -1,416 +1,419 @@
1
- ---
2
- dataset_info:
3
- - config_name: v1-All
4
- features:
5
- - name: id
6
- dtype: int64
7
- - name: prompt
8
- dtype: string
9
- - name: ground-truth rule
10
- dtype: string
11
- - name: validation program
12
- dtype: string
13
- - name: symbols
14
- dtype: string
15
- - name: curriculum level
16
- dtype: int64
17
- - name: curriculum tier
18
- dtype: string
19
- - name: rule sampling
20
- dtype: string
21
- - name: rule complexity
22
- dtype: string
23
- - name: background sampling
24
- dtype: string
25
- - name: problem size
26
- dtype: int64
27
- - name: vocabulary predicates
28
- dtype: int64
29
- - name: vocabulary car constants
30
- dtype: string
31
- splits:
32
- - name: train
33
- num_bytes: 906109958
34
- num_examples: 18053
35
- - name: validation
36
- num_bytes: 9164235
37
- num_examples: 200
38
- - name: test
39
- num_bytes: 45380731
40
- num_examples: 1000
41
- download_size: 187898644
42
- dataset_size: 960654924
43
- - config_name: v1-Basic
44
- features:
45
- - name: id
46
- dtype: int64
47
- - name: prompt
48
- dtype: string
49
- - name: ground-truth rule
50
- dtype: string
51
- - name: validation program
52
- dtype: string
53
- - name: symbols
54
- dtype: string
55
- - name: curriculum level
56
- dtype: int64
57
- - name: curriculum tier
58
- dtype: string
59
- - name: rule sampling
60
- dtype: string
61
- - name: rule complexity
62
- dtype: string
63
- - name: background sampling
64
- dtype: string
65
- - name: problem size
66
- dtype: int64
67
- - name: vocabulary predicates
68
- dtype: int64
69
- - name: vocabulary car constants
70
- dtype: string
71
- splits:
72
- - name: train
73
- num_bytes: 14477316
74
- num_examples: 3053
75
- - name: validation
76
- num_bytes: 201511
77
- num_examples: 50
78
- - name: test
79
- num_bytes: 1001669
80
- num_examples: 250
81
- download_size: 1919005
82
- dataset_size: 15680496
83
- - config_name: v1-Easy
84
- features:
85
- - name: id
86
- dtype: int64
87
- - name: prompt
88
- dtype: string
89
- - name: ground-truth rule
90
- dtype: string
91
- - name: validation program
92
- dtype: string
93
- - name: symbols
94
- dtype: string
95
- - name: curriculum level
96
- dtype: int64
97
- - name: curriculum tier
98
- dtype: string
99
- - name: rule sampling
100
- dtype: string
101
- - name: rule complexity
102
- dtype: string
103
- - name: background sampling
104
- dtype: string
105
- - name: problem size
106
- dtype: int64
107
- - name: vocabulary predicates
108
- dtype: int64
109
- - name: vocabulary car constants
110
- dtype: string
111
- splits:
112
- - name: train
113
- num_bytes: 52301913
114
- num_examples: 5000
115
- - name: validation
116
- num_bytes: 523617
117
- num_examples: 50
118
- - name: test
119
- num_bytes: 2618073
120
- num_examples: 250
121
- download_size: 8978903
122
- dataset_size: 55443603
123
- - config_name: v1-Hard
124
- features:
125
- - name: id
126
- dtype: int64
127
- - name: prompt
128
- dtype: string
129
- - name: ground-truth rule
130
- dtype: string
131
- - name: validation program
132
- dtype: string
133
- - name: symbols
134
- dtype: string
135
- - name: curriculum level
136
- dtype: int64
137
- - name: curriculum tier
138
- dtype: string
139
- - name: rule sampling
140
- dtype: string
141
- - name: rule complexity
142
- dtype: string
143
- - name: background sampling
144
- dtype: string
145
- - name: problem size
146
- dtype: int64
147
- - name: vocabulary predicates
148
- dtype: int64
149
- - name: vocabulary car constants
150
- dtype: string
151
- splits:
152
- - name: train
153
- num_bytes: 595930175
154
- num_examples: 5000
155
- - name: validation
156
- num_bytes: 5997545
157
- num_examples: 50
158
- - name: test
159
- num_bytes: 29720641
160
- num_examples: 250
161
- download_size: 127360270
162
- dataset_size: 631648361
163
- - config_name: v1-Medium
164
- features:
165
- - name: id
166
- dtype: int64
167
- - name: prompt
168
- dtype: string
169
- - name: ground-truth rule
170
- dtype: string
171
- - name: validation program
172
- dtype: string
173
- - name: symbols
174
- dtype: string
175
- - name: curriculum level
176
- dtype: int64
177
- - name: curriculum tier
178
- dtype: string
179
- - name: rule sampling
180
- dtype: string
181
- - name: rule complexity
182
- dtype: string
183
- - name: background sampling
184
- dtype: string
185
- - name: problem size
186
- dtype: int64
187
- - name: vocabulary predicates
188
- dtype: int64
189
- - name: vocabulary car constants
190
- dtype: string
191
- splits:
192
- - name: train
193
- num_bytes: 243400554
194
- num_examples: 5000
195
- - name: validation
196
- num_bytes: 2441562
197
- num_examples: 50
198
- - name: test
199
- num_bytes: 12040348
200
- num_examples: 250
201
- download_size: 49778729
202
- dataset_size: 257882464
203
- configs:
204
- - config_name: v1-All
205
- data_files:
206
- - split: train
207
- path: v1-All/train-*
208
- - split: validation
209
- path: v1-All/validation-*
210
- - split: test
211
- path: v1-All/test-*
212
- - config_name: v1-Basic
213
- data_files:
214
- - split: train
215
- path: v1-Basic/train-*
216
- - split: validation
217
- path: v1-Basic/validation-*
218
- - split: test
219
- path: v1-Basic/test-*
220
- - config_name: v1-Easy
221
- data_files:
222
- - split: train
223
- path: v1-Easy/train-*
224
- - split: validation
225
- path: v1-Easy/validation-*
226
- - split: test
227
- path: v1-Easy/test-*
228
- - config_name: v1-Hard
229
- data_files:
230
- - split: train
231
- path: v1-Hard/train-*
232
- - split: validation
233
- path: v1-Hard/validation-*
234
- - split: test
235
- path: v1-Hard/test-*
236
- - config_name: v1-Medium
237
- data_files:
238
- - split: train
239
- path: v1-Medium/train-*
240
- - split: validation
241
- path: v1-Medium/validation-*
242
- - split: test
243
- path: v1-Medium/test-*
244
- license: cc-by-4.0
245
- language:
246
- - fr
247
- tags:
248
- - logic
249
- - inductive
250
- - reasoning
251
- pretty_name: Scalable Logical Reasoning Benchmark
252
- size_categories:
253
- - 1K<n<10K
254
- ---
255
-
256
- <div style="display: flex; justify-content: flex-start;"><img src="https://raw.githubusercontent.com/ml-research/ScalableLogicalReasoning/master/images/SLR-Bench2.jpg" alt="Preview" style="width: 40vw; min-width: 300px; max-width: 600px;"> </div>
257
-
258
- ## Dataset Description
259
- - **Language(s) (NLP):** French
260
- - **Point of Contact:** [Lukas Helff](mailto:[email protected])
261
- - **License:** [CC BY](https://creativecommons.org/licenses/by/4.0/)
262
-
263
- # 🧠 SLR-Bench-French: Scalable Logical Reasoning Benchmark (French Edition)
264
- [![Eval & Reward Model](https://img.shields.io/badge/%F0%9F%A4%96%20Reward%20Model-HF-blueviolet)](https://huggingface.co/spaces/AIML-TUDA/VerifiableRewardsForScalableLogicalReasoning)
265
- [![GitHub](https://img.shields.io/badge/Code-GitHub-blue)](https://github.com/ml-research/ScalableLogicalReasoning)
266
- [![arXiv](https://img.shields.io/badge/arXiv-2506.15787-b31b1b.svg)](https://arxiv.org/abs/2506.15787)
267
-
268
-
269
- ## SLR-Bench Versions:
270
- [![SLR-Bench 🇬🇧](https://img.shields.io/badge/SLR--Bench-English-orange)](https://huggingface.co/datasets/AIML-TUDA/SLR-Bench)
271
- [![SLR-Bench 🇩🇪](https://img.shields.io/badge/SLR--Bench-German-red)](https://huggingface.co/datasets/AIML-TUDA/SLR-Bench-German)
272
- [![SLR-Bench 🇪🇸](https://img.shields.io/badge/SLR--Bench-Spanish-yellow)](https://huggingface.co/datasets/AIML-TUDA/SLR-Bench-Spanish)
273
- [![SLR-Bench 🇪🇸](https://img.shields.io/badge/SLR--Bench-French-blue)](https://huggingface.co/datasets/AIML-TUDA/SLR-Bench-French)
274
-
275
-
276
- **SLR-Bench-French** is the **French-language pendant** of the original [**SLR-Bench**](https://huggingface.co/datasets/AIML-TUDA/SLR-Bench) dataset.
277
- It follows the same symbolic structure, evaluation framework, and curriculum as the English version but provides all **natural-language task prompts translated into French**.
278
-
279
- This enables systematic evaluation and training of Large Language Models (LLMs) in logical reasoning in French, supporting both *multilingual reasoning* and *cross-lingual generalization* research.
280
-
281
- ## DS Overview
282
- - **Curriculum:** 20 complexity levels, grouped into 4 broad tiers (basic, easy, medium, hard)
283
- - **Tasks:** >19,000, each comprising: A *natural language* prompt, an executable *validation program* for automatic evaluation, and a *latent ground-truth rule*.
284
- - **Application:** SLR-Bench can used to evaluate conventional and reasoning LLMs (e.g., GPT-4o, Llama-3, Gemini, DeepSeek-R1) and to train models via curriculum learning.
285
-
286
-
287
- ## Key Features of SLR
288
-
289
- - 🔨 **Automatic Task Generation:** Synthesize new inductive reasoning tasks with controllable complexity, novel logic rules, and natural language prompts—no need for human annotation.
290
- - 🧩 **Programmable & Scalable:** Specify your own logic vocabulary, grammar, rule distributions, and task parameters; supports curriculum-style scaling and out-of-distribution task creation.
291
- - 🧠 **Symbolic, Automated Evaluation:** Deterministically verify LLM outputs via the validation program, not MCQA, LLM judge, or exact matching.
292
- - 📈 **Curriculum Learning:** Use SLR-Bench, a structured 20-level benchmark, for evaluating and training models across a span of logical challenges.
293
-
294
- ---
295
-
296
- ## Quick Start
297
-
298
- ### Loading the Dataset
299
- ```python
300
- from datasets import load_dataset
301
- # Load SLR-Bench test split
302
- ds = load_dataset("AIML-TUDA/SLR-Bench-French", "v1-All", split="test")
303
- ```
304
- ### Evaluate using SLR-Bench
305
- Requires the [`evaluate`](https://huggingface.co/docs/evaluate/) library and a Prolog interpreter installed on your system (e.g., [SWI-Prolog](https://www.swi-prolog.org/)).
306
- Install the required dependencies via:
307
-
308
- ```bash
309
- pip install evaluate
310
- sudo apt-get install swi-prolog
311
- ```
312
-
313
- #### Example Usage
314
-
315
- ```python
316
- from evaluate import load
317
- symbolic_judge = load("AIML-TUDA/VerifiableRewardsForScalableLogicalReasoning")
318
- rules = ds["ground-truth rule"] # For demo only—use model predictions in practice
319
- references = [
320
- {
321
- "validation_program": p,
322
- "evaluation_config": {
323
- "positive_predicate": "est",
324
- "negative_predicate": "ouest"
325
- }
326
- } for p in ds["validation program"]
327
- ]
328
-
329
- results = symbolic_judge.compute(predictions=rules, references=references)
330
- print(results)
331
- ```
332
-
333
- *Note: For real evaluation, replace `rules` with your model's predicted rules. Here, we use ground-truth rules for demonstration only.*
334
-
335
- Example results:
336
- ```python
337
- {'accuracy': 1.0,
338
- 'partial_score': 1.0,
339
- 'syntax_score': 1.0,
340
- 'detailed_results': [{'is_correct': True,'partial_score': 1.0,'syntax_valid': True,'error': None,'exec_time1': 0.014362812042236328},
341
- {'is_correct': True,'partial_score': 1.0,'syntax_valid': True,'error': None,'exec_time1': 0.012364625930786133}]
342
- }
343
- ```
344
-
345
- ---
346
-
347
- ## **Dataset Columns**
348
-
349
- | Column Name | Type | Description |
350
- |-----------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------|
351
- | **id** | `int64` | Unique identifier for each dataset entry (row). |
352
- | **prompt** | `string` | The instruction prompt of the logical reasoning task. |
353
- | **ground-truth rule** | `string` | The latent logical rule that solves the given task. |
354
- | **validation program** | `string` | The executable logic program used by the symbolic judge to verify candidate model solutions for the task. |
355
- | **symbols** | `string` | Symbolic representation of the bckground knowledge |
356
- | **curriculum level** | `int64` | The specific level (1-20) in the SLR-Bench curriculum that this task belongs to, reflecting difficulty. |
357
- | **curriculum tier** | `string` | The broader difficulty tier grouping multiple levels (e.g., "basic", "easy", "medium", "hard"). |
358
- | **rule sampling** | `string` | The policy or method used to generate the ground-truth rule (e.g., "uniform", "llm-guided"). |
359
- | **rule complexity** | `string` | The length of the logic rule, counting the number of used predicates without the has_car predicate. |
360
- | **background sampling** | `string` | The policy used to sample background knowledge for the task (e.g., "mirror", "uniform"). |
361
- | **problem size** | `int64` | Total number of labeled examples (positive + negative) provided in the task instance. |
362
- | **vocabulary predicates** | `int64` | Number of unique predicate symbols available in the vocabulary for constructing rules and background knowledge. |
363
- | **vocabulary car constants**| `string` | List of car constant symbols (e.g., "car1", "car2", ...) available in the vocabulary for the task. |
364
-
365
-
366
- ---
367
- ## SLR-Bench Curriculum
368
-
369
- | Stage | Level | #Consts | #Preds | κ (Problem Size) | Bπ (Background) | Rlen (Rule len) | Rsample (Rule Sample) | Comb. Size |
370
- | --------- | ----- | ------- | ------ | ---------------- | --------------- | --------------- | --------------------- | ---------------- |
371
- | **Basic** | 1 | 1 | 5 | 2 | mirror | 1 | uniform | 10³ |
372
- | | 2 | 1 | 5 | 2 | mirror | 1-2 | uniform | 10³ |
373
- | | 3 | 1 | 5 | 4 | mirror | 1-2 | uniform | 10⁵ |
374
- | | 4 | 2 | 5 | 4 | mirror | 1-2 | uniform | 10¹⁰ |
375
- | | 5 | 2 | 5 | 6 | mirror | 1-2 | uniform | 10¹⁶ |
376
- | **Easy** | 6 | 2 | 5 | 6 | uniform | 1-2 | uniform/llm | 10¹⁶ |
377
- | | 7 | 2 | 6 | 6 | uniform | 1-2 | uniform/llm | 10²⁴ |
378
- | | 8 | 2-3 | 6 | 8 | uniform | 1-2 | uniform/llm | 10³² |
379
- | | 9 | 2-3 | 6 | 10 | uniform | 2-3 | uniform/llm | 10⁴⁰ |
380
- | | 10 | 2-3 | 7 | 12 | uniform | 2-3 | uniform/llm | 10⁵⁵ |
381
- | **Medium**| 11 | 2-4 | 7 | 14 | uniform | 2-3 | uniform/llm | 10⁶⁵ |
382
- | | 12 | 2-4 | 9 | 16 | uniform | 3-4 | uniform/llm | 10¹²⁰ |
383
- | | 13 | 4-6 | 9 | 18 | uniform | 3-4 | uniform/llm | 10²⁷¹ |
384
- | | 14 | 4-6 | 9 | 20 | uniform | 4-5 | uniform/llm | 10³⁰⁰ |
385
- | | 15 | 4-6 | 9 | 22 | uniform | 4-5 | uniform/llm | 10³³⁰ |
386
- | **Hard** | 16 | 5-6 | 10 | 24 | uniform | 4-5 | uniform/llm | 10⁵⁰⁷ |
387
- | | 17 | 5-6 | 10 | 26 | uniform | 4-5 | uniform/llm | 10⁵⁴⁹ |
388
- | | 18 | 5-6 | 12 | 28 | uniform | 4-5 | uniform/llm | 10⁸⁰⁵ |
389
- | | 19 | 5-6 | 12 | 30 | uniform | 5 | uniform/llm | 10⁸⁶¹ |
390
- | | 20 | 5-6 | 12 | 32 | uniform | 5 | uniform/llm | 10⁹¹⁹ |
391
-
392
- *SLR-Bench Curriculum: level-wise configurations, detailing language and task parameters for each difficulty stage. Language complexity is systematically increased by expanding the number of car constants and predicates. Task configuration grows via adapting problem size, background sampling, rule length, and rule sampling strategy. The final column reports the approximate combinatorial size of unique tasks available at each level.*
393
-
394
- ---
395
-
396
-
397
- ## Licensing Information
398
-
399
- SLR-Bench is made available under the [CC BY](https://creativecommons.org/licenses/by/4.0/) license.
400
-
401
-
402
- ## Citation
403
-
404
- If you use this dataset or framework, please cite:
405
-
406
- ```bibtex
407
- @incollection{helff2025slrautomatedsynthesisscalable,
408
- title={SLR: Automated Synthesis for Scalable Logical Reasoning},
409
- author={Lukas Helff and Ahmad Omar and Felix Friedrich and Antonia Wüst and Hikaru Shindo and Rupert Mitchell and Tim Woydt and Patrick Schramowski and Wolfgang Stammer and Kristian Kersting},
410
- year={2025},
411
- booktitle ={Working Notes of the NeurIPS Workshop on Foundations of Reasoning in Language Models},
412
- url={https://arxiv.org/abs/2506.15787},
413
- }
414
- ```
415
-
 
 
 
416
  ---
 
1
+ ---
2
+ dataset_info:
3
+ - config_name: v1-All
4
+ features:
5
+ - name: id
6
+ dtype: int64
7
+ - name: prompt
8
+ dtype: string
9
+ - name: ground-truth rule
10
+ dtype: string
11
+ - name: validation program
12
+ dtype: string
13
+ - name: symbols
14
+ dtype: string
15
+ - name: curriculum level
16
+ dtype: int64
17
+ - name: curriculum tier
18
+ dtype: string
19
+ - name: rule sampling
20
+ dtype: string
21
+ - name: rule complexity
22
+ dtype: string
23
+ - name: background sampling
24
+ dtype: string
25
+ - name: problem size
26
+ dtype: int64
27
+ - name: vocabulary predicates
28
+ dtype: int64
29
+ - name: vocabulary car constants
30
+ dtype: string
31
+ splits:
32
+ - name: train
33
+ num_bytes: 906109958
34
+ num_examples: 18053
35
+ - name: validation
36
+ num_bytes: 9164235
37
+ num_examples: 200
38
+ - name: test
39
+ num_bytes: 45380731
40
+ num_examples: 1000
41
+ download_size: 187898644
42
+ dataset_size: 960654924
43
+ - config_name: v1-Basic
44
+ features:
45
+ - name: id
46
+ dtype: int64
47
+ - name: prompt
48
+ dtype: string
49
+ - name: ground-truth rule
50
+ dtype: string
51
+ - name: validation program
52
+ dtype: string
53
+ - name: symbols
54
+ dtype: string
55
+ - name: curriculum level
56
+ dtype: int64
57
+ - name: curriculum tier
58
+ dtype: string
59
+ - name: rule sampling
60
+ dtype: string
61
+ - name: rule complexity
62
+ dtype: string
63
+ - name: background sampling
64
+ dtype: string
65
+ - name: problem size
66
+ dtype: int64
67
+ - name: vocabulary predicates
68
+ dtype: int64
69
+ - name: vocabulary car constants
70
+ dtype: string
71
+ splits:
72
+ - name: train
73
+ num_bytes: 14477316
74
+ num_examples: 3053
75
+ - name: validation
76
+ num_bytes: 201511
77
+ num_examples: 50
78
+ - name: test
79
+ num_bytes: 1001669
80
+ num_examples: 250
81
+ download_size: 1919005
82
+ dataset_size: 15680496
83
+ - config_name: v1-Easy
84
+ features:
85
+ - name: id
86
+ dtype: int64
87
+ - name: prompt
88
+ dtype: string
89
+ - name: ground-truth rule
90
+ dtype: string
91
+ - name: validation program
92
+ dtype: string
93
+ - name: symbols
94
+ dtype: string
95
+ - name: curriculum level
96
+ dtype: int64
97
+ - name: curriculum tier
98
+ dtype: string
99
+ - name: rule sampling
100
+ dtype: string
101
+ - name: rule complexity
102
+ dtype: string
103
+ - name: background sampling
104
+ dtype: string
105
+ - name: problem size
106
+ dtype: int64
107
+ - name: vocabulary predicates
108
+ dtype: int64
109
+ - name: vocabulary car constants
110
+ dtype: string
111
+ splits:
112
+ - name: train
113
+ num_bytes: 52301913
114
+ num_examples: 5000
115
+ - name: validation
116
+ num_bytes: 523617
117
+ num_examples: 50
118
+ - name: test
119
+ num_bytes: 2618073
120
+ num_examples: 250
121
+ download_size: 8978903
122
+ dataset_size: 55443603
123
+ - config_name: v1-Hard
124
+ features:
125
+ - name: id
126
+ dtype: int64
127
+ - name: prompt
128
+ dtype: string
129
+ - name: ground-truth rule
130
+ dtype: string
131
+ - name: validation program
132
+ dtype: string
133
+ - name: symbols
134
+ dtype: string
135
+ - name: curriculum level
136
+ dtype: int64
137
+ - name: curriculum tier
138
+ dtype: string
139
+ - name: rule sampling
140
+ dtype: string
141
+ - name: rule complexity
142
+ dtype: string
143
+ - name: background sampling
144
+ dtype: string
145
+ - name: problem size
146
+ dtype: int64
147
+ - name: vocabulary predicates
148
+ dtype: int64
149
+ - name: vocabulary car constants
150
+ dtype: string
151
+ splits:
152
+ - name: train
153
+ num_bytes: 595930175
154
+ num_examples: 5000
155
+ - name: validation
156
+ num_bytes: 5997545
157
+ num_examples: 50
158
+ - name: test
159
+ num_bytes: 29720641
160
+ num_examples: 250
161
+ download_size: 127360270
162
+ dataset_size: 631648361
163
+ - config_name: v1-Medium
164
+ features:
165
+ - name: id
166
+ dtype: int64
167
+ - name: prompt
168
+ dtype: string
169
+ - name: ground-truth rule
170
+ dtype: string
171
+ - name: validation program
172
+ dtype: string
173
+ - name: symbols
174
+ dtype: string
175
+ - name: curriculum level
176
+ dtype: int64
177
+ - name: curriculum tier
178
+ dtype: string
179
+ - name: rule sampling
180
+ dtype: string
181
+ - name: rule complexity
182
+ dtype: string
183
+ - name: background sampling
184
+ dtype: string
185
+ - name: problem size
186
+ dtype: int64
187
+ - name: vocabulary predicates
188
+ dtype: int64
189
+ - name: vocabulary car constants
190
+ dtype: string
191
+ splits:
192
+ - name: train
193
+ num_bytes: 243400554
194
+ num_examples: 5000
195
+ - name: validation
196
+ num_bytes: 2441562
197
+ num_examples: 50
198
+ - name: test
199
+ num_bytes: 12040348
200
+ num_examples: 250
201
+ download_size: 49778729
202
+ dataset_size: 257882464
203
+ configs:
204
+ - config_name: v1-All
205
+ data_files:
206
+ - split: train
207
+ path: v1-All/train-*
208
+ - split: validation
209
+ path: v1-All/validation-*
210
+ - split: test
211
+ path: v1-All/test-*
212
+ - config_name: v1-Basic
213
+ data_files:
214
+ - split: train
215
+ path: v1-Basic/train-*
216
+ - split: validation
217
+ path: v1-Basic/validation-*
218
+ - split: test
219
+ path: v1-Basic/test-*
220
+ - config_name: v1-Easy
221
+ data_files:
222
+ - split: train
223
+ path: v1-Easy/train-*
224
+ - split: validation
225
+ path: v1-Easy/validation-*
226
+ - split: test
227
+ path: v1-Easy/test-*
228
+ - config_name: v1-Hard
229
+ data_files:
230
+ - split: train
231
+ path: v1-Hard/train-*
232
+ - split: validation
233
+ path: v1-Hard/validation-*
234
+ - split: test
235
+ path: v1-Hard/test-*
236
+ - config_name: v1-Medium
237
+ data_files:
238
+ - split: train
239
+ path: v1-Medium/train-*
240
+ - split: validation
241
+ path: v1-Medium/validation-*
242
+ - split: test
243
+ path: v1-Medium/test-*
244
+ license: cc-by-4.0
245
+ language:
246
+ - fr
247
+ tags:
248
+ - logic
249
+ - inductive
250
+ - reasoning
251
+ pretty_name: Scalable Logical Reasoning Benchmark
252
+ size_categories:
253
+ - 1K<n<10K
254
+ ---
255
+
256
+ <div style="display: flex; justify-content: flex-start;"><img src="https://raw.githubusercontent.com/ml-research/ScalableLogicalReasoning/master/images/SLR-Bench2.jpg" alt="Preview" style="width: 40vw; min-width: 300px; max-width: 600px;"> </div>
257
+
258
+ ## Dataset Description
259
+ - **Language(s) (NLP):** French
260
+ - **Point of Contact:** [Lukas Helff](mailto:[email protected])
261
+ - **License:** [CC BY](https://creativecommons.org/licenses/by/4.0/)
262
+
263
+ # 🧠 SLR-Bench-French: Scalable Logical Reasoning Benchmark (French Edition)
264
+ [![Eval & Reward Model](https://img.shields.io/badge/%F0%9F%A4%96%20Reward%20Model-HF-blueviolet)](https://huggingface.co/spaces/AIML-TUDA/VerifiableRewardsForScalableLogicalReasoning)
265
+ [![GitHub](https://img.shields.io/badge/Code-GitHub-blue)](https://github.com/ml-research/ScalableLogicalReasoning)
266
+ [![arXiv](https://img.shields.io/badge/arXiv-2506.15787-b31b1b.svg)](https://arxiv.org/abs/2506.15787)
267
+
268
+
269
+ ## SLR-Bench Multilingual Versions:
270
+ [![SLR-Bench 🇬🇧](https://img.shields.io/badge/SLR--Bench-English-orange)](https://huggingface.co/datasets/AIML-TUDA/SLR-Bench)
271
+ [![SLR-Bench 🇩🇪](https://img.shields.io/badge/SLR--Bench-German-red)](https://huggingface.co/datasets/AIML-TUDA/SLR-Bench-German)
272
+ [![SLR-Bench 🇪🇸](https://img.shields.io/badge/SLR--Bench-Spanish-yellow)](https://huggingface.co/datasets/AIML-TUDA/SLR-Bench-Spanish)
273
+ [![SLR-Bench 🇪🇸](https://img.shields.io/badge/SLR--Bench-French-blue)](https://huggingface.co/datasets/AIML-TUDA/SLR-Bench-French)
274
+ [![SLR-Bench 🇪🇸](https://img.shields.io/badge/SLR--Bench-Portuguese-darkred)](https://huggingface.co/datasets/AIML-TUDA/SLR-Bench-Portuguese)
275
+ [![SLR-Bench 🇪🇸](https://img.shields.io/badge/SLR--Bench-Italian-darkblue)](https://huggingface.co/datasets/AIML-TUDA/SLR-Bench-Italian)
276
+ [![SLR-Bench 🇪🇸](https://img.shields.io/badge/SLR--Bench-Dutch-darkorange)](https://huggingface.co/datasets/AIML-TUDA/SLR-Bench-Dutch)
277
+
278
+
279
+ **SLR-Bench-French** is the **French-language pendant** of the original [**SLR-Bench**](https://huggingface.co/datasets/AIML-TUDA/SLR-Bench) dataset.
280
+ It follows the same symbolic structure, evaluation framework, and curriculum as the English version but provides all **natural-language task prompts translated into French**.
281
+
282
+ This enables systematic evaluation and training of Large Language Models (LLMs) in logical reasoning in French, supporting both *multilingual reasoning* and *cross-lingual generalization* research.
283
+
284
+ ## DS Overview
285
+ - **Curriculum:** 20 complexity levels, grouped into 4 broad tiers (basic, easy, medium, hard)
286
+ - **Tasks:** >19,000, each comprising: A *natural language* prompt, an executable *validation program* for automatic evaluation, and a *latent ground-truth rule*.
287
+ - **Application:** SLR-Bench can used to evaluate conventional and reasoning LLMs (e.g., GPT-4o, Llama-3, Gemini, DeepSeek-R1) and to train models via curriculum learning.
288
+
289
+
290
+ ## Key Features of SLR
291
+
292
+ - 🔨 **Automatic Task Generation:** Synthesize new inductive reasoning tasks with controllable complexity, novel logic rules, and natural language prompts—no need for human annotation.
293
+ - 🧩 **Programmable & Scalable:** Specify your own logic vocabulary, grammar, rule distributions, and task parameters; supports curriculum-style scaling and out-of-distribution task creation.
294
+ - 🧠 **Symbolic, Automated Evaluation:** Deterministically verify LLM outputs via the validation program, not MCQA, LLM judge, or exact matching.
295
+ - 📈 **Curriculum Learning:** Use SLR-Bench, a structured 20-level benchmark, for evaluating and training models across a span of logical challenges.
296
+
297
+ ---
298
+
299
+ ## Quick Start
300
+
301
+ ### Loading the Dataset
302
+ ```python
303
+ from datasets import load_dataset
304
+ # Load SLR-Bench test split
305
+ ds = load_dataset("AIML-TUDA/SLR-Bench-French", "v1-All", split="test")
306
+ ```
307
+ ### Evaluate using SLR-Bench
308
+ Requires the [`evaluate`](https://huggingface.co/docs/evaluate/) library and a Prolog interpreter installed on your system (e.g., [SWI-Prolog](https://www.swi-prolog.org/)).
309
+ Install the required dependencies via:
310
+
311
+ ```bash
312
+ pip install evaluate
313
+ sudo apt-get install swi-prolog
314
+ ```
315
+
316
+ #### Example Usage
317
+
318
+ ```python
319
+ from evaluate import load
320
+ symbolic_judge = load("AIML-TUDA/VerifiableRewardsForScalableLogicalReasoning")
321
+ rules = ds["ground-truth rule"] # For demo only—use model predictions in practice
322
+ references = [
323
+ {
324
+ "validation_program": p,
325
+ "evaluation_config": {
326
+ "positive_predicate": "est",
327
+ "negative_predicate": "ouest"
328
+ }
329
+ } for p in ds["validation program"]
330
+ ]
331
+
332
+ results = symbolic_judge.compute(predictions=rules, references=references)
333
+ print(results)
334
+ ```
335
+
336
+ *Note: For real evaluation, replace `rules` with your model's predicted rules. Here, we use ground-truth rules for demonstration only.*
337
+
338
+ Example results:
339
+ ```python
340
+ {'accuracy': 1.0,
341
+ 'partial_score': 1.0,
342
+ 'syntax_score': 1.0,
343
+ 'detailed_results': [{'is_correct': True,'partial_score': 1.0,'syntax_valid': True,'error': None,'exec_time1': 0.014362812042236328},
344
+ {'is_correct': True,'partial_score': 1.0,'syntax_valid': True,'error': None,'exec_time1': 0.012364625930786133}]
345
+ }
346
+ ```
347
+
348
+ ---
349
+
350
+ ## **Dataset Columns**
351
+
352
+ | Column Name | Type | Description |
353
+ |-----------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------|
354
+ | **id** | `int64` | Unique identifier for each dataset entry (row). |
355
+ | **prompt** | `string` | The instruction prompt of the logical reasoning task. |
356
+ | **ground-truth rule** | `string` | The latent logical rule that solves the given task. |
357
+ | **validation program** | `string` | The executable logic program used by the symbolic judge to verify candidate model solutions for the task. |
358
+ | **symbols** | `string` | Symbolic representation of the bckground knowledge |
359
+ | **curriculum level** | `int64` | The specific level (1-20) in the SLR-Bench curriculum that this task belongs to, reflecting difficulty. |
360
+ | **curriculum tier** | `string` | The broader difficulty tier grouping multiple levels (e.g., "basic", "easy", "medium", "hard"). |
361
+ | **rule sampling** | `string` | The policy or method used to generate the ground-truth rule (e.g., "uniform", "llm-guided"). |
362
+ | **rule complexity** | `string` | The length of the logic rule, counting the number of used predicates without the has_car predicate. |
363
+ | **background sampling** | `string` | The policy used to sample background knowledge for the task (e.g., "mirror", "uniform"). |
364
+ | **problem size** | `int64` | Total number of labeled examples (positive + negative) provided in the task instance. |
365
+ | **vocabulary predicates** | `int64` | Number of unique predicate symbols available in the vocabulary for constructing rules and background knowledge. |
366
+ | **vocabulary car constants**| `string` | List of car constant symbols (e.g., "car1", "car2", ...) available in the vocabulary for the task. |
367
+
368
+
369
+ ---
370
+ ## SLR-Bench Curriculum
371
+
372
+ | Stage | Level | #Consts | #Preds | κ (Problem Size) | Bπ (Background) | Rlen (Rule len) | Rsample (Rule Sample) | Comb. Size |
373
+ | --------- | ----- | ------- | ------ | ---------------- | --------------- | --------------- | --------------------- | ---------------- |
374
+ | **Basic** | 1 | 1 | 5 | 2 | mirror | 1 | uniform | 10³ |
375
+ | | 2 | 1 | 5 | 2 | mirror | 1-2 | uniform | 10³ |
376
+ | | 3 | 1 | 5 | 4 | mirror | 1-2 | uniform | 10|
377
+ | | 4 | 2 | 5 | 4 | mirror | 1-2 | uniform | 10¹⁰ |
378
+ | | 5 | 2 | 5 | 6 | mirror | 1-2 | uniform | 10¹⁶ |
379
+ | **Easy** | 6 | 2 | 5 | 6 | uniform | 1-2 | uniform/llm | 10¹⁶ |
380
+ | | 7 | 2 | 6 | 6 | uniform | 1-2 | uniform/llm | 10²⁴ |
381
+ | | 8 | 2-3 | 6 | 8 | uniform | 1-2 | uniform/llm | 10³² |
382
+ | | 9 | 2-3 | 6 | 10 | uniform | 2-3 | uniform/llm | 10⁴⁰ |
383
+ | | 10 | 2-3 | 7 | 12 | uniform | 2-3 | uniform/llm | 10⁵⁵ |
384
+ | **Medium**| 11 | 2-4 | 7 | 14 | uniform | 2-3 | uniform/llm | 10⁶⁵ |
385
+ | | 12 | 2-4 | 9 | 16 | uniform | 3-4 | uniform/llm | 10¹²⁰ |
386
+ | | 13 | 4-6 | 9 | 18 | uniform | 3-4 | uniform/llm | 10²⁷¹ |
387
+ | | 14 | 4-6 | 9 | 20 | uniform | 4-5 | uniform/llm | 10³⁰⁰ |
388
+ | | 15 | 4-6 | 9 | 22 | uniform | 4-5 | uniform/llm | 10³³⁰ |
389
+ | **Hard** | 16 | 5-6 | 10 | 24 | uniform | 4-5 | uniform/llm | 10⁵⁰⁷ |
390
+ | | 17 | 5-6 | 10 | 26 | uniform | 4-5 | uniform/llm | 10⁵⁴⁹ |
391
+ | | 18 | 5-6 | 12 | 28 | uniform | 4-5 | uniform/llm | 10⁸⁰⁵ |
392
+ | | 19 | 5-6 | 12 | 30 | uniform | 5 | uniform/llm | 10⁸⁶¹ |
393
+ | | 20 | 5-6 | 12 | 32 | uniform | 5 | uniform/llm | 10⁹¹⁹ |
394
+
395
+ *SLR-Bench Curriculum: level-wise configurations, detailing language and task parameters for each difficulty stage. Language complexity is systematically increased by expanding the number of car constants and predicates. Task configuration grows via adapting problem size, background sampling, rule length, and rule sampling strategy. The final column reports the approximate combinatorial size of unique tasks available at each level.*
396
+
397
+ ---
398
+
399
+
400
+ ## Licensing Information
401
+
402
+ SLR-Bench is made available under the [CC BY](https://creativecommons.org/licenses/by/4.0/) license.
403
+
404
+
405
+ ## Citation
406
+
407
+ If you use this dataset or framework, please cite:
408
+
409
+ ```bibtex
410
+ @incollection{helff2025slrautomatedsynthesisscalable,
411
+ title={SLR: Automated Synthesis for Scalable Logical Reasoning},
412
+ author={Lukas Helff and Ahmad Omar and Felix Friedrich and Antonia Wüst and Hikaru Shindo and Rupert Mitchell and Tim Woydt and Patrick Schramowski and Wolfgang Stammer and Kristian Kersting},
413
+ year={2025},
414
+ booktitle ={Working Notes of the NeurIPS Workshop on Foundations of Reasoning in Language Models},
415
+ url={https://arxiv.org/abs/2506.15787},
416
+ }
417
+ ```
418
+
419
  ---