Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,145 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
task_categories:
|
3 |
+
- visual-question-answering
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
tags:
|
7 |
+
- Vision
|
8 |
+
- remote-sensing
|
9 |
+
configs:
|
10 |
+
- config_name: CLRS
|
11 |
+
data_files:
|
12 |
+
- split: test
|
13 |
+
path: clrs/data-*.arrow
|
14 |
+
- config_name: UC_Merced
|
15 |
+
data_files:
|
16 |
+
- split: test
|
17 |
+
path: UCMerced/data-*.arrow
|
18 |
+
- config_name: FloodNet
|
19 |
+
data_files:
|
20 |
+
- split: test
|
21 |
+
path: floodnet/data-*.arrow
|
22 |
+
- config_name: NWPU-Captions
|
23 |
+
data_files:
|
24 |
+
- split: test
|
25 |
+
path: NWPU/data-*.arrow
|
26 |
+
---
|
27 |
+
|
28 |
+
# Adapting Multimodal Large Language Models to Domains via Post-Training
|
29 |
+
|
30 |
+
This repos contains the **remote sensing visual instruction tasks for evaluating MLLMs** in our paper: [On Domain-Specific Post-Training for Multimodal Large Language Models](https://huggingface.co/papers/2411.19930).
|
31 |
+
|
32 |
+
The main project page is: [Adapt-MLLM-to-Domains](https://huggingface.co/AdaptLLM/Adapt-MLLM-to-Domains)
|
33 |
+
|
34 |
+
## 1. Download Data
|
35 |
+
You can load datasets using the `datasets` library:
|
36 |
+
```python
|
37 |
+
from datasets import load_dataset
|
38 |
+
|
39 |
+
# Choose the task name from the list of available tasks
|
40 |
+
task_name = 'CLRS' # Options: 'CLRS', 'UC_Merced', 'FloodNet', 'NWPU-Captions'
|
41 |
+
|
42 |
+
# Load the dataset for the chosen task
|
43 |
+
data = load_dataset('AdaptLLM/remote-sensing-VQA-benchmark', task_name, split='test')
|
44 |
+
|
45 |
+
print(list(data)[0])
|
46 |
+
```
|
47 |
+
|
48 |
+
The mapping between category names and indices for 'CLRS', 'UC_Merced' is:
|
49 |
+
|
50 |
+
```python3
|
51 |
+
# CLRS
|
52 |
+
label_to_name_map = {'0': 'agricultural', '1': 'airplane', '2': 'baseball diamond', '3': 'beach', '4': 'buildings',
|
53 |
+
'5': 'chaparral', '6': 'dense residential', '7': 'forest', '8': 'freeway', '9': 'golf course', '10': 'harbor', '11': 'intersection', '12': 'medium residential', '13': 'mobile home park', '14': 'overpass', '15': 'parking lot', '16': 'river',
|
54 |
+
'17': 'runway', '18': 'sparse residential', '19': 'storage tanks', '20': 'tennis court'}
|
55 |
+
|
56 |
+
# UC_Merced
|
57 |
+
label_to_name_map = {'0': 'agricultural', '1': 'airplane', '2': 'baseball diamond', '3': 'beach', '4': 'buildings',
|
58 |
+
'5': 'chaparral', '6': 'dense residential', '7': 'forest', '8': 'freeway', '9': 'golf course', '10': 'harbor', '11': 'intersection', '12': 'medium residential', '13': 'mobile home park', '14': 'overpass', '15': 'parking lot', '16': 'river',
|
59 |
+
'17': 'runway', '18': 'sparse residential', '19': 'storage tanks', '20': 'tennis court'}
|
60 |
+
```
|
61 |
+
|
62 |
+
## 2. Evaluate Any MLLM Compatible with vLLM on the Food Benchmarks
|
63 |
+
|
64 |
+
We provide a guide to directly evaluate MLLMs such as LLaVA-v1.6 ([open-source version](https://huggingface.co/Lin-Chen/open-llava-next-llama3-8b)), Qwen2-VL-Instruct, and Llama-3.2-Vision-Instruct.
|
65 |
+
To evaluate other MLLMs, refer to [this guide](https://github.com/vllm-project/vllm/blob/main/examples/offline_inference_vision_language.py) for modifying the `BaseTask` class in the [vllm_inference/utils/task.py](https://github.com/bigai-ai/QA-Synthesizer/blob/main/vllm_inference/utils/task.py) file.
|
66 |
+
Feel free reach out to us for assistance!
|
67 |
+
|
68 |
+
**The dataset loading script is embedded in the inference code, so you can directly run the following commands to evaluate MLLMs.**
|
69 |
+
|
70 |
+
### 1) Setup
|
71 |
+
|
72 |
+
Install vLLM using `pip` or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source).
|
73 |
+
|
74 |
+
As recommended in the official vLLM documentation, install vLLM in a **fresh new** conda environment:
|
75 |
+
|
76 |
+
```bash
|
77 |
+
conda create -n vllm python=3.10 -y
|
78 |
+
conda activate vllm
|
79 |
+
pip install vllm # Ensure vllm>=0.6.2 for compatibility with Llama-3.2. If Llama-3.2 is not used, vllm==0.6.1 is sufficient.
|
80 |
+
```
|
81 |
+
|
82 |
+
Clone the repository and navigate to the inference directory:
|
83 |
+
|
84 |
+
```bash
|
85 |
+
git clone https://github.com/bigai-ai/QA-Synthesizer.git
|
86 |
+
cd QA-Synthesizer/vllm_inference
|
87 |
+
RESULTS_DIR=./eval_results # Directory for saving evaluation scores
|
88 |
+
```
|
89 |
+
|
90 |
+
### 2) Evaluate
|
91 |
+
|
92 |
+
Run the following commands:
|
93 |
+
|
94 |
+
```bash
|
95 |
+
# Specify the domain: choose from ['remote-sensing', 'CLRS', 'UC_Merced', 'FloodNet', 'NWPU-Captions']
|
96 |
+
# 'remote-sensing' runs inference on all food tasks; others run on individual tasks.
|
97 |
+
DOMAIN='remote-sensing'
|
98 |
+
|
99 |
+
# Specify the model type: choose from ['llava', 'qwen2_vl', 'mllama']
|
100 |
+
# For LLaVA-v1.6, Qwen2-VL, and Llama-3.2-Vision-Instruct, respectively.
|
101 |
+
MODEL_TYPE='qwen2_vl'
|
102 |
+
|
103 |
+
# Set the model repository ID on Hugging Face. Examples:
|
104 |
+
# "Qwen/Qwen2-VL-2B-Instruct", "AdaptLLM/remote-sensing-Qwen2-VL-2B-Instruct" for MLLMs based on Qwen2-VL-Instruct.
|
105 |
+
# "meta-llama/Llama-3.2-11B-Vision-Instruct", "AdaptLLM/remote-sensing-Llama-3.2-11B-Vision-Instruct" for MLLMs based on Llama-3.2-Vision-Instruct.
|
106 |
+
# "AdaptLLM/remote-sensing-LLaVA-NeXT-Llama3-8B" for MLLMs based on LLaVA-v1.6.
|
107 |
+
MODEL=AdaptLLM/remote-sensing-Qwen2-VL-2B-Instruct
|
108 |
+
|
109 |
+
# Set the directory for saving model prediction outputs:
|
110 |
+
OUTPUT_DIR=./output/AdaMLLM-remote-sensing-Qwen-2B_${DOMAIN}
|
111 |
+
|
112 |
+
# Run inference with data parallelism; adjust CUDA devices as needed:
|
113 |
+
CUDA_VISIBLE_DEVICES='0,1,2,3,4,5,6,7' bash run_inference.sh ${MODEL} ${DOMAIN} ${MODEL_TYPE} ${OUTPUT_DIR} ${RESULTS_DIR}
|
114 |
+
```
|
115 |
+
|
116 |
+
Detailed scripts to reproduce our results are in [Evaluation.md](https://github.com/bigai-ai/QA-Synthesizer/blob/main/docs/Evaluation.md)
|
117 |
+
|
118 |
+
### 3) Results
|
119 |
+
The evaluation results are stored in `./eval_results`, and the model prediction outputs are in `./output`.
|
120 |
+
|
121 |
+
|
122 |
+
## Citation
|
123 |
+
If you find our work helpful, please cite us.
|
124 |
+
|
125 |
+
[AdaMLLM](https://huggingface.co/papers/2411.19930)
|
126 |
+
```bibtex
|
127 |
+
@article{adamllm,
|
128 |
+
title={On Domain-Specific Post-Training for Multimodal Large Language Models},
|
129 |
+
author={Cheng, Daixuan and Huang, Shaohan and Zhu, Ziyu and Zhang, Xintong and Zhao, Wayne Xin and Luan, Zhongzhi and Dai, Bo and Zhang, Zhenliang},
|
130 |
+
journal={arXiv preprint arXiv:2411.19930},
|
131 |
+
year={2024}
|
132 |
+
}
|
133 |
+
```
|
134 |
+
|
135 |
+
[Adapt LLM to Domains](https://huggingface.co/papers/2309.09530) (ICLR 2024)
|
136 |
+
```bibtex
|
137 |
+
@inproceedings{
|
138 |
+
cheng2024adapting,
|
139 |
+
title={Adapting Large Language Models via Reading Comprehension},
|
140 |
+
author={Daixuan Cheng and Shaohan Huang and Furu Wei},
|
141 |
+
booktitle={The Twelfth International Conference on Learning Representations},
|
142 |
+
year={2024},
|
143 |
+
url={https://openreview.net/forum?id=y886UXPEZ0}
|
144 |
+
}
|
145 |
+
```
|