loc_building_test / load_output_sample.py
aih
Add load_output_sample, update README
1a2d6bb
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""Loading script for output_sample dataset, from the Historical American Buildings, Landscapes, and Engineering Records collection of the Library of Congress."""
import json
import os
import datasets
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
"""
_DESCRIPTION = """\
Sample dataset scraped from https://www.loc.gov/collections/historic-american-buildings-landscapes-and-engineering-records/?c=150&at!=content,pages&fo=json
The dataset contains images and metadata for historic buildings, landscapes, and engineering records.
"""
_HOMEPAGE = "https://www.loc.gov/collections/historic-american-buildings-landscapes-and-engineering-records"
_LICENSE = "Creative Commons 1.0 Universal"
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
"first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
"second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
}
class HABLER_LOC(datasets.GeneratorBasedBuilder):
"""Historical American Buildings, Landscapes, and Engineering Records dataset."""
VERSION = datasets.Version("1.1.0")
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
features = datasets.Features(
{
"call_number": datasets.Value("string"),
"control_number": datasets.Value("string"),
"created": datasets.Value("string"),
"created_published": datasets.Value("string"),
"created_published_date": datasets.Value("string"),
"creators": datasets.Sequence(feature={"link": datasets.Value("string"), "role": datasets.Value("string"), "title": datasets.Value("string") }),
"date": datasets.Value("string"),
"display_offsite": datasets.Bool(),
"id": datasets.Value("string"),
"link": datasets.Value("string"),
"medium_brief": datasets.Value("string"),
"mediums": datasets.Sequence(datasets.Value("string")),
"modified": datasets.Value("string"),
"notes": datasets.Sequence(datasets.Value("string")),
"part_of": datasets.Value("string"),
"part_of_group": datasets.Value("string"),
"place": datasets.Sequence(features={
"latitude": datasets.Value("string"),
"link": datasets.Value("string"),
"longitude": datasets.Value("string"),
"title": datasets.Value("string")}),
"repository": datasets.Value("string"),
"resource_links": datasets.Sequence(datasets.Value("string")),
"rights_advisory": datasets.Value("string"),
"rights_information": datasets.Value("string"),
"service_low": datasets.Value("string"),
"service_medium": datasets.Value("string"),
"source_created": datasets.Value("string"),
"source_modified": datasets.Value("string"),
"subject_headings": datasets.Sequence(datasets.Value("string")),
"thumb_gallery": datasets.Value("string"),
"title": datasets.Value("string")
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
urls = _URLS[self.config.name]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, "train.jsonl"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, "dev.jsonl"),
"split": "dev",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, "test.jsonl"),
"split": "test"
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
with open(filepath, encoding="utf-8") as f:
for key, row in enumerate(f):
data = json.loads(row)
if self.config.name == "first_domain":
# Yields examples as (key, example) tuples
yield key, {
"sentence": data["sentence"],
"option1": data["option1"],
"answer": "" if split == "test" else data["answer"],
}
else:
yield key, {
"sentence": data["sentence"],
"option2": data["option2"],
"second_domain_answer": "" if split == "test" else data["second_domain_answer"],
}