File size: 1,945 Bytes
27cf2a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
language:
- en
license: mit
tags:
- two-tower
- semantic-search
- document-retrieval
- information-retrieval
- dual-encoder
---
# mlx7-two-tower-data
This repository contains datasets used for training Two-Tower (Dual Encoder) models for document retrieval.
## Dataset Description
The datasets provided here are structured for training dual encoder models with various sampling strategies:
- **classic_triplets**: 48.2 MB
- **intra_query_neg**: 47.6 MB
- **multi_pos_multi_neg**: 126.5 MB
### Dataset Details
- **classic_triplets.parquet**: Standard triplet format with (query, positive_document, negative_document)
- **intra_query_neg.parquet**: Negative examples selected from within the same query batch
- **multi_pos_multi_neg.parquet**: Multiple positive and negative examples per query
## Usage
```python
import pandas as pd
# Load a dataset
df = pd.read_parquet("classic_triplets.parquet")
# View the schema
print(df.columns)
# Example of working with the data
queries = df["q_text"].tolist()
positive_docs = df["d_pos_text"].tolist()
negative_docs = df["d_neg_text"].tolist()
```
## Data Source and Preparation
These datasets are derived from the MS MARCO passage retrieval dataset, processed to create effective training examples for two-tower models.
## Dataset Structure
The datasets follow a common schema with the following fields:
- `q_text`: Query text
- `d_pos_text`: Positive (relevant) document text
- `d_neg_text`: Negative (non-relevant) document text
Additional fields may be present in specific datasets.
## Citation
If you use this dataset in your research, please cite the original MS MARCO dataset:
```
@article{msmarco,
title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset},
author={Nguyen, Tri and Rosenberg, Matthew and Song, Xia and Gao, Jianfeng and Tiwary, Saurabh and Majumder, Rangan and Deng, Li},
journal={arXiv preprint arXiv:1611.09268},
year={2016}
}
```
|