File size: 1,869 Bytes
5ce5664
 
 
 
 
 
 
 
 
 
c8464f0
 
e3f41ff
 
 
 
 
 
 
 
 
b73dd1b
 
e3f41ff
 
fa9d27b
 
 
 
5ce5664
cf25d1e
 
 
d4fde75
cf25d1e
 
6a48ec9
bd5effa
 
daad69a
 
bd5effa
 
1c09990
 
 
 
 
c0e9e7b
1c09990
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
license: apache-2.0
tags:
- chess
- HCS
- handwriting
- scoresheets
- forms
size_categories:
- n<1K
task_categories:
- image-to-text
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
dataset_info:
  features:
  - name: image
    dtype: image
  - name: labels
    sequence: string
  splits:
  - name: train
    num_bytes: 359944485.0
    num_examples: 206
  download_size: 359895992
  dataset_size: 359944485.0
---
# Disclaimer
This is not data that I created. It originally came from the Paper [_Digitization of Handwritten Chess Scoresheets with a BiLSTM Network_](https://www.mdpi.com/1477430)

You can also find the dataset [Chesscorner/HCS_Dataset-csv](https://huggingface.co/datasets/Chesscorner/HCS_Dataset-csv), [Chesscorner/HCS_pictures](https://huggingface.co/datasets/Chesscorner/HCS_pictures), [here](https://sites.google.com/view/chess-scoresheet-dataset) and [here](https://tc11.cvc.uab.es/datasets/HCS_1)

# Datasets
There are 2 versions of this dataset
- unprocessed_hcs Dataset where you are right now
- processed_hcs Dataset where the extracted move boxes are provided which can be found [here](https://huggingface.co/datasets/BenjaminKost/processed_hcs)

# Description 
The Handwritten Chess Scoresheet Datase (HCS) contains a set of single and double paged chess scoresheet images with ground truth labels. 
The unprocessed images are a list of the scoresheets the corresponding labels.
The labels are a list of strings of the chess moves shown on the scoresheet in the order of the right order as on the scoresheet.

# Usage
## In Python script
```python
import datasets
unprocessed_hcs = datasets.load_dataset("Benjaminkost/unprocessed_hcs")

# Show first image
first_image = unprocessed_hcs["train"][0]["image"]
first_label = unprocessed_hcs["train"][0]["labels"]

first_image.show()
print(first_label)
```