--- configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* dataset_info: features: - name: id dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string - name: image dtype: image splits: - name: train num_bytes: 103857954.75 num_examples: 3498 - name: validation num_bytes: 21699876.0 num_examples: 740 - name: test num_bytes: 23003112.0 num_examples: 760 download_size: 147406131 dataset_size: 148560942.75 --- # Qwen2.5-VL Product Classification Dataset This dataset is designed for fine-tuning the Qwen2.5-VL model on product classification tasks. ## Dataset Description The dataset consists of product images with 10 balanced categories: - 蛋白粉 (Protein powder) - 纸巾 (Tissue paper) - 衣服 (Clothes) - 膏药贴 (Medicinal plasters) - 胶囊 (Capsules) - 电脑 (Computer) - 手表 (Watch) - 弓箭 (Bow and arrow) - 医疗器械 (Medical equipment) - 包 (Bag) Each item has two types of samples: 1. Image classification: Given a product image, determine its category 2. Title classification: Given a product title, determine its category ## Dataset Structure This dataset follows the ShareGPT format: For image classification items: ``` { 'id': 'classification_[unique_id]', 'image_path': PIL.Image.Image(...), # The product image 'item_type': 'image_classification', 'conversations': [ {'from': 'human', 'value': 'Prompt text with token'}, {'from': 'assistant', 'value': 'Model expected response (class label)'} ] } ``` For title classification items: ``` { 'id': 'title_classification_[unique_id]', 'item_type': 'title_classification', 'conversations': [ {'from': 'human', 'value': 'Prompt text with product title'}, {'from': 'assistant', 'value': 'Model expected response (class label)'} ] } ``` ## Dataset Statistics - Train samples: 3498 - Validation samples: 740 - Test samples: 760 ## Usage ```python from datasets import load_dataset # Load dataset from Hugging Face Hub dataset = load_dataset("BrightXiaoHan/tari-product-image") # Access an example example = dataset["train"][0] print(example["conversations"][0]['value']) print(example["conversations"][1]['value']) if "image_path" in example: image = example["image_path"] ``` This dataset is intended for fine-tuning Qwen2.5-VL models for product classification tasks.