Avada11 commited on
Commit
9dc03f4
Β·
verified Β·
1 Parent(s): 205559b

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +151 -0
README.md ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ ---
4
+
5
+ # ByteCameraDepth Dataset
6
+
7
+ ByteCameraDepth is a multi-camera depth estimation dataset containing synchronized depth, color, and auxiliary data captured from various 3D cameras. The dataset provides comprehensive depth sensing from multiple cameras in various in-door scenarios, making it ideal for developing and evaluating depth estimation algorithms.
8
+
9
+ ## Dataset Overview
10
+
11
+ - **Purpose**: Multi-camera depth estimation research and benchmarking
12
+ - **Total Sessions**: 39 recording sessions
13
+ - **Uncompressed Size**: ~2.7TB
14
+ - **Data Collection System**: [Multi-Camera Depth Recording System](https://github.com/Ericonaldo/depth_recording)
15
+ - **License**: CC-BY-4.0
16
+
17
+ ## Quick Start
18
+
19
+ ### Data Extraction
20
+
21
+ The dataset is provided as split archive files. To extract the complete dataset:
22
+
23
+ ```bash
24
+ cat recorded_data.tar.part.* | tar -xvf -
25
+ ```
26
+
27
+ This will create a `recorded_data` folder containing all 39 recording sessions.
28
+
29
+ ## Dataset Structure
30
+
31
+ ### Archive Organization
32
+
33
+ ```
34
+ recorded_data_packed/
35
+ β”œβ”€β”€ recorded_data.tar.part.000
36
+ β”œβ”€β”€ recorded_data.tar.part.001
37
+ β”œβ”€β”€ ...
38
+ └── recorded_data.tar.part.136
39
+ ```
40
+
41
+ ### Extracted Data Structure
42
+
43
+ After extraction, the data is organized as follows:
44
+
45
+ ```
46
+ recorded_data/
47
+ └── YYYYMMDD_HHMM/ # Timestamp-based session folder (39 sessions total)
48
+ β”œβ”€β”€ camera_realsense_455/ # Intel RealSense D455
49
+ β”‚ β”œβ”€β”€ depth_000.png # 16-bit depth images
50
+ β”‚ β”œβ”€β”€ color_000.png # 8-bit color images
51
+ β”‚ └── ...
52
+ β”œβ”€β”€ camera_realsense_d405/ # Intel RealSense D405
53
+ β”‚ β”œβ”€β”€ depth_000.png
54
+ β”‚ β”œβ”€β”€ color_000.png
55
+ β”‚ └── ...
56
+ β”œβ”€β”€ camera_realsense_d415/ # Intel RealSense D415
57
+ β”‚ β”œβ”€β”€ depth_000.png
58
+ β”‚ β”œβ”€β”€ color_000.png
59
+ β”‚ └── ...
60
+ β”œβ”€β”€ camera_realsense_d435/ # Intel RealSense D435
61
+ β”‚ β”œβ”€β”€ depth_000.png
62
+ β”‚ β”œβ”€β”€ color_000.png
63
+ β”‚ └── ...
64
+ β”œβ”€β”€ camera_realsense_l515/ # Intel RealSense L515
65
+ β”‚ β”œβ”€β”€ depth_000.png
66
+ β”‚ β”œβ”€β”€ color_000.png
67
+ β”‚ └── ...
68
+ β”œβ”€β”€ camera_kinect/ # Microsoft Azure Kinect
69
+ β”‚ β”œβ”€β”€ depth_000.png # 16-bit depth images
70
+ β”‚ β”œβ”€β”€ color_000.png # 8-bit color images
71
+ β”‚ β”œβ”€β”€ ir_000.png # Infrared images
72
+ β”‚ └── ...
73
+ β”œβ”€β”€ camera_zed2i_neural/ # Stereolabs ZED2i (Neural mode)
74
+ β”‚ β”œβ”€β”€ raw_depth_000.npy # 32-bit float depth arrays
75
+ β”‚ β”œβ”€β”€ depth_000.png # 16-bit depth images
76
+ β”‚ β”œβ”€β”€ color_000.png # Color images
77
+ β”‚ β”œβ”€β”€ pcd_000.npy # Point cloud data (X,Y,Z)
78
+ β”‚ β”œβ”€β”€ normal_000.npy # Surface normal vectors
79
+ β”‚ └── ...
80
+ β”œβ”€β”€ camera_zed2i_performance/
81
+ β”œβ”€β”€ camera_zed2i_quality/
82
+ β”œβ”€β”€ camera_zed2i_ultra/
83
+ └── ...
84
+ ```
85
+
86
+ ## Camera Systems and Specifications
87
+
88
+ The dataset includes data collected by our [depth recording toolkit](https://github.com/Ericonaldo/depth_recording):
89
+
90
+ ### Intel RealSense Cameras
91
+
92
+ - **Models**: D405, D415, D435, D455, L515
93
+ - **Output**: `depth_xxx.png` (16-bit), `color_xxx.png` (8-bit)
94
+
95
+ ### Microsoft Azure Kinect
96
+
97
+ - **Depth Resolution**: Wide FOV unbinned
98
+ - **Output**: `depth_xxx.png` (16-bit), `color_xxx.png` (8-bit), `ir_xxx.png` (infrared)
99
+
100
+ ### Stereolabs ZED2i
101
+
102
+ - **Depth Resolution**: 1280Γ—720
103
+ - **Depth Modes**: 4 different modes (neural, performance, quality, ultra)
104
+ - **Output**:
105
+ - `raw_depth_xxx.npy` (32-bit float depth arrays)
106
+ - `depth_xxx.png` (16-bit depth images)
107
+ - `color_xxx.png` (8-bit color images)
108
+ - `pcd_xxx.npy` (point cloud data)
109
+ - `normal_xxx.npy` (surface normal vectors)
110
+
111
+ ## Data Formats
112
+
113
+ ### File Types and Specifications
114
+
115
+ | Data Type | Format | Bit Depth | Description |
116
+ |-----------|--------|-----------|-------------|
117
+ | Depth Images | PNG | 16-bit | Standard depth maps |
118
+ | Color Images | PNG | 8-bit RGB | Color/texture images |
119
+ | Raw Depth | NPY | 32-bit float | High-precision depth (ZED2i only) |
120
+ | Point Clouds | NPY | 32-bit float | 3D point coordinates (X,Y,Z) |
121
+ | Surface Normals | NPY | 32-bit float | Surface normal vectors |
122
+ | Infrared | PNG | 8-bit | IR images (Kinect only) |
123
+
124
+ ### Depth Data
125
+ The unit of the depth data is 'mm' for most of the cameras, which means that we can obtain the 'm'-scale by dividing the raw depth by 1000.
126
+ Note that RealSense D405/L515 has different scales, which are 2500 and 10000, respectively. In other words, we should divide the raw depth by 2500 and 10000 to obtain the 'm'-scale depth.
127
+
128
+ ### File Naming Convention
129
+
130
+ - Sequential numbering: `xxx` represents frame index (000, 001, 002, ...)
131
+ - Synchronized capture: Same frame numbers across cameras represent simultaneous capture
132
+ - Camera identification: Folder names clearly identify camera type and model
133
+
134
+ ## πŸ“„ Citation
135
+
136
+ If you use this dataset in your research, please cite:
137
+
138
+ ```bibtex
139
+ @article{liu2025manipulation,
140
+ title={Manipulation as in Simulation: Enabling Accurate Geometry Perception in Robots},
141
+ author={Liu, Minghuan and Zhu, Zhengbang and Han, Xiaoshen and Hu, Peng and Lin, Haotong and
142
+ Li, Xinyao and Chen, Jingxiao and Xu, Jiafeng and Yang, Yichu and Lin, Yunfeng and
143
+ Li, Xinghang and Yu, Yong and Zhang, Weinan and Kong, Tao and Kang, Bingyi},
144
+ journal={arXiv preprint},
145
+ year={2025}
146
+ }
147
+ ```
148
+
149
+ ## License
150
+
151
+ This dataset is released under the CC BY 4.0 License.