Datasets:

Tasks:
Other
Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 10,228 Bytes
6504b64
b32b910
90cf257
 
 
 
 
 
6504b64
c4a6741
6504b64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4a6741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6504b64
 
 
 
 
 
 
 
 
c4a6741
 
 
 
 
 
 
 
6504b64
b32b910
 
 
 
 
e6db3c7
90cf257
29d1e8d
90cf257
b32b910
 
 
 
 
aec2047
b32b910
 
 
aec2047
e6db3c7
 
 
 
 
 
 
aec2047
e6db3c7
 
 
 
aec2047
e6db3c7
b32b910
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29d1e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b32b910
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
---
license: apache-2.0
task_categories:
- other
tags:
- poi-recommendation
- trajectory-prediction
- human-mobility
dataset_info:
- config_name: default
  features:
  - name: user_id
    dtype: string
  - name: trail_id
    dtype: string
  - name: inputs
    dtype: string
  - name: targets
    dtype: string
  splits:
  - name: train
    num_bytes: 1636839
    num_examples: 3836
  - name: validation
    num_bytes: 231399
    num_examples: 549
  - name: test
    num_bytes: 469775
    num_examples: 1097
  download_size: 590806
  dataset_size: 2338013
- config_name: tabular
  features:
  - name: trail_id
    dtype: string
  - name: user_id
    dtype: int64
  - name: venue_id
    dtype: int64
  - name: latitude
    dtype: float64
  - name: longitude
    dtype: float64
  - name: name
    dtype: string
  - name: address
    dtype: string
  - name: venue_category
    dtype: string
  - name: venue_category_id
    dtype: string
  - name: venue_category_id_code
    dtype: int64
  - name: venue_city
    dtype: string
  - name: venue_city_latitude
    dtype: float64
  - name: venue_city_longitude
    dtype: float64
  - name: venue_country
    dtype: string
  - name: timestamp
    dtype: string
  splits:
  - name: train
    num_bytes: 2005420
    num_examples: 9691
  - name: validation
    num_bytes: 281184
    num_examples: 1357
  - name: test
    num_bytes: 577126
    num_examples: 2791
  download_size: 762968
  dataset_size: 2863730
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
- config_name: tabular
  data_files:
  - split: train
    path: tabular/train-*
  - split: validation
    path: tabular/validation-*
  - split: test
    path: tabular/test-*
---

# Massive-STEPS-Tokyo

<div align="center">

[![huggingface](https://img.shields.io/badge/%F0%9F%A4%97-Hugging_Face_Collections-yellow)](https://huggingface.co/collections/CRUISEResearchGroup/massive-steps-point-of-interest-check-in-dataset-682716f625d74c2569bc7a73)
[![huggingface](https://img.shields.io/badge/%F0%9F%A4%97-Hugging_Face_Papers-yellow)](https://huggingface.co/papers/2505.11239)
[![arXiv](https://img.shields.io/badge/arXiv-2505.11239-b31b1b.svg)](https://arxiv.org/abs/2505.11239)
[![GitHub](https://img.shields.io/badge/github-%23121011.svg?logo=github&logoColor=white)](https://github.com/cruiseresearchgroup/Massive-STEPS)

</div>

## Dataset Summary

**[Massive-STEPS](https://github.com/cruiseresearchgroup/Massive-STEPS)** is a large-scale dataset of semantic trajectories intended for understanding POI check-ins. The dataset is derived from the [Semantic Trails Dataset](https://github.com/D2KLab/semantic-trails) and [Foursquare Open Source Places](https://huggingface.co/datasets/foursquare/fsq-os-places), and includes check-in data from 15 cities across 10 countries. The dataset is designed to facilitate research in various domains, including trajectory prediction, POI recommendation, and urban modeling. Massive-STEPS emphasizes the importance of geographical diversity, scale, semantic richness, and reproducibility in trajectory datasets.

| **City**        |                                 **URL**                                 |
| --------------- | :---------------------------------------------------------------------: |
| Bandung ๐Ÿ‡ฎ๐Ÿ‡ฉ       |    [๐Ÿค—](https://huggingface.co/datasets/CRUISEResearchGroup/Massive-STEPS-Bandung/)    |
| Beijing ๐Ÿ‡จ๐Ÿ‡ณ       |    [๐Ÿค—](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Beijing/)    |
| Istanbul ๐Ÿ‡น๐Ÿ‡ท      |   [๐Ÿค—](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Istanbul/)    |
| Jakarta ๐Ÿ‡ฎ๐Ÿ‡ฉ       |    [๐Ÿค—](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Jakarta/)    |
| Kuwait City ๐Ÿ‡ฐ๐Ÿ‡ผ   |  [๐Ÿค—](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Kuwait-City/)  |
| Melbourne ๐Ÿ‡ฆ๐Ÿ‡บ     |   [๐Ÿค—](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Melbourne/)   |
| Moscow ๐Ÿ‡ท๐Ÿ‡บ        |    [๐Ÿค—](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Moscow/)     |
| New York ๐Ÿ‡บ๐Ÿ‡ธ      |   [๐Ÿค—](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-New-York/)    |
| Palembang ๐Ÿ‡ฎ๐Ÿ‡ฉ    |    [๐Ÿค—](https://huggingface.co/datasets/CRUISEResearchGroup/Massive-STEPS-Palembang/)   |
| Petaling Jaya ๐Ÿ‡ฒ๐Ÿ‡พ | [๐Ÿค—](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Petaling-Jaya/) |
| Sรฃo Paulo ๐Ÿ‡ง๐Ÿ‡ท     |   [๐Ÿค—](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Sao-Paulo/)   |
| Shanghai ๐Ÿ‡จ๐Ÿ‡ณ      |   [๐Ÿค—](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Shanghai/)    |
| Sydney ๐Ÿ‡ฆ๐Ÿ‡บ        |    [๐Ÿค—](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Sydney/)     |
| Tangerang ๐Ÿ‡ฎ๐Ÿ‡ฉ    |    [๐Ÿค—](https://huggingface.co/datasets/CRUISEResearchGroup/Massive-STEPS-Tangerang/)   |
| Tokyo ๐Ÿ‡ฏ๐Ÿ‡ต         |     [๐Ÿค—](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Tokyo/)     |

### Dataset Sources

The dataset is derived from two sources:

1. **Semantic Trails Dataset**: 
   - Repository: [D2KLab/semantic-trails](https://github.com/D2KLab/semantic-trails)
   - Paper: Monti, D., Palumbo, E., Rizzo, G., Troncy, R., Ehrhart, T., & Morisio, M. (2018). Semantic trails of city explorations: How do we live a city. *arXiv preprint [arXiv:1812.04367](https://arxiv.org/abs/1812.04367)*.
2. **Foursquare Open Source Places**: 
    - Repository: [foursquare/fsq-os-places](https://huggingface.co/datasets/foursquare/fsq-os-places)
    - Documentation: [Foursquare Open Source Places](https://docs.foursquare.com/data-products/docs/access-fsq-os-places)

## Dataset Structure

```shell
.
โ”œโ”€โ”€ tokyo_checkins_test.csv # test set check-ins
โ”œโ”€โ”€ tokyo_checkins_train.csv # train set check-ins
โ”œโ”€โ”€ tokyo_checkins_validation.csv # validation set check-ins
โ”œโ”€โ”€ tokyo_checkins.csv # all check-ins
โ”œโ”€โ”€ data # trajectory prompts
โ”‚ย ย  โ”œโ”€โ”€ test-00000-of-00001.parquet
โ”‚ย ย  โ”œโ”€โ”€ train-00000-of-00001.parquet
โ”‚ย ย  โ””โ”€โ”€ validation-00000-of-00001.parquet
โ””โ”€โ”€ README.md
```

### Data Instances

An example of entries in `tokyo_checkins.csv`:

```csv
trail_id,user_id,venue_id,latitude,longitude,name,address,venue_category,venue_category_id,venue_category_id_code,venue_city,venue_city_latitude,venue_city_longitude,venue_country,timestamp
2018_18009,901,1425,35.59492076661418,139.34504702908666,JR ๆฉ‹ๆœฌ้ง… (JR Hashimoto Sta.),็ท‘ๅŒบๆฉ‹ๆœฌ6-1-25,Train Station,4bf58dd8d48988d129951735,59,Hachiลji,35.65583,139.32389,JP,2017-10-03 14:55:00
2018_18009,901,191,35.595137562150846,139.34373266637422,ไบฌ็Ž‹ ๆฉ‹ๆœฌ้ง… (KO45),็ท‘ๅŒบๆฉ‹ๆœฌ2-3-2,Train Station,4bf58dd8d48988d129951735,59,Hachiลji,35.65583,139.32389,JP,2017-10-03 14:59:00
2018_18010,901,38,35.64444469921653,139.35434304296533,ๅŒ—้‡Ž้ง… (Kitano Sta.) (KO33),ๆ‰“่ถŠ็”บ335-1,Train Station,4bf58dd8d48988d129951735,59,Hachiลji,35.65583,139.32389,JP,2017-10-04 11:57:00
2018_18010,901,3,35.65808032639735,139.34275103595496,ไบฌ็Ž‹ๅ…ซ็Ž‹ๅญ้ง… (Keiล-hachiลji Sta.),ๆ˜Ž็ฅž็”บ3-27-1,Train Station,4bf58dd8d48988d129951735,59,Hachiลji,35.65583,139.32389,JP,2017-10-04 12:00:00
2018_18010,901,2684,35.65829873991196,139.34315085411072,ใƒญใƒผใ‚ฝใƒณ ไบฌ็Ž‹ๅ…ซ็Ž‹ๅญ้ง…ๅ‰ๅบ—,ๆ˜Ž็ฅž็”บ4-6-13,Convenience Store,4d954b0ea243a5684a65b473,215,Hachiลji,35.65583,139.32389,JP,2017-10-04 12:04:00
```

### Data Fields

| **Field**                | **Description**                    |
| ------------------------ | ---------------------------------- |
| `trail_id`               | Numeric identifier of trail        |
| `user_id`                | Numeric identifier of user         |
| `venue_id`               | Numeric identifier of POI venue    |
| `latitude`               | Latitude of POI venue              |
| `longitude`              | Longitude of POI venue             |
| `name`                   | POI/business name                  |
| `address`                | Street address of POI venue        |
| `venue_category`         | POI category name                  |
| `venue_category_id`      | Foursquare Category ID             |
| `venue_category_id_code` | Numeric identifier of category     |
| `venue_city`             | Administrative region name         |
| `venue_city_latitude`    | Latitude of administrative region  |
| `venue_city_longitude`   | Longitude of administrative region |
| `venue_country`          | Country code                       |
| `timestamp`              | Check-in timestamp                 |

### Dataset Statistics

| City        | Users  | Trails  | POIs  | Check-ins | #train | #val  | #test |
| ----------- | :----: | :-----: | :---: | :-------: | :----: | :---: | :---: |
| Tokyo ๐Ÿ‡ฏ๐Ÿ‡ต | 764 | 5,482 | 4,725 | 13,839 | 3,836 | 549  | 1,097 |

## Additional Information

### License

```
Copyright 2024 Foursquare Labs, Inc. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License.
You may obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.
```

## ๐Ÿ”– Citation

If you find this repository useful for your research, please consider citing our paper:

```bibtex
@misc{wongso2025massivestepsmassivesemantictrajectories,
  title         = {Massive-STEPS: Massive Semantic Trajectories for Understanding POI Check-ins -- Dataset and Benchmarks},
  author        = {Wilson Wongso and Hao Xue and Flora D. Salim},
  year          = {2025},
  eprint        = {2505.11239},
  archiveprefix = {arXiv},
  primaryclass  = {cs.LG},
  url           = {https://arxiv.org/abs/2505.11239}
}
```

### Contact

If you have any questions or suggestions, feel free to contact Wilson at `w.wongso(at)unsw(dot)edu(dot)au`.