Datasets:
File size: 10,228 Bytes
6504b64 b32b910 90cf257 6504b64 c4a6741 6504b64 c4a6741 6504b64 c4a6741 6504b64 b32b910 e6db3c7 90cf257 29d1e8d 90cf257 b32b910 aec2047 b32b910 aec2047 e6db3c7 aec2047 e6db3c7 aec2047 e6db3c7 b32b910 29d1e8d b32b910 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
---
license: apache-2.0
task_categories:
- other
tags:
- poi-recommendation
- trajectory-prediction
- human-mobility
dataset_info:
- config_name: default
features:
- name: user_id
dtype: string
- name: trail_id
dtype: string
- name: inputs
dtype: string
- name: targets
dtype: string
splits:
- name: train
num_bytes: 1636839
num_examples: 3836
- name: validation
num_bytes: 231399
num_examples: 549
- name: test
num_bytes: 469775
num_examples: 1097
download_size: 590806
dataset_size: 2338013
- config_name: tabular
features:
- name: trail_id
dtype: string
- name: user_id
dtype: int64
- name: venue_id
dtype: int64
- name: latitude
dtype: float64
- name: longitude
dtype: float64
- name: name
dtype: string
- name: address
dtype: string
- name: venue_category
dtype: string
- name: venue_category_id
dtype: string
- name: venue_category_id_code
dtype: int64
- name: venue_city
dtype: string
- name: venue_city_latitude
dtype: float64
- name: venue_city_longitude
dtype: float64
- name: venue_country
dtype: string
- name: timestamp
dtype: string
splits:
- name: train
num_bytes: 2005420
num_examples: 9691
- name: validation
num_bytes: 281184
num_examples: 1357
- name: test
num_bytes: 577126
num_examples: 2791
download_size: 762968
dataset_size: 2863730
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
- config_name: tabular
data_files:
- split: train
path: tabular/train-*
- split: validation
path: tabular/validation-*
- split: test
path: tabular/test-*
---
# Massive-STEPS-Tokyo
<div align="center">
[](https://huggingface.co/collections/CRUISEResearchGroup/massive-steps-point-of-interest-check-in-dataset-682716f625d74c2569bc7a73)
[](https://huggingface.co/papers/2505.11239)
[](https://arxiv.org/abs/2505.11239)
[](https://github.com/cruiseresearchgroup/Massive-STEPS)
</div>
## Dataset Summary
**[Massive-STEPS](https://github.com/cruiseresearchgroup/Massive-STEPS)** is a large-scale dataset of semantic trajectories intended for understanding POI check-ins. The dataset is derived from the [Semantic Trails Dataset](https://github.com/D2KLab/semantic-trails) and [Foursquare Open Source Places](https://huggingface.co/datasets/foursquare/fsq-os-places), and includes check-in data from 15 cities across 10 countries. The dataset is designed to facilitate research in various domains, including trajectory prediction, POI recommendation, and urban modeling. Massive-STEPS emphasizes the importance of geographical diversity, scale, semantic richness, and reproducibility in trajectory datasets.
| **City** | **URL** |
| --------------- | :---------------------------------------------------------------------: |
| Bandung ๐ฎ๐ฉ | [๐ค](https://huggingface.co/datasets/CRUISEResearchGroup/Massive-STEPS-Bandung/) |
| Beijing ๐จ๐ณ | [๐ค](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Beijing/) |
| Istanbul ๐น๐ท | [๐ค](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Istanbul/) |
| Jakarta ๐ฎ๐ฉ | [๐ค](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Jakarta/) |
| Kuwait City ๐ฐ๐ผ | [๐ค](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Kuwait-City/) |
| Melbourne ๐ฆ๐บ | [๐ค](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Melbourne/) |
| Moscow ๐ท๐บ | [๐ค](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Moscow/) |
| New York ๐บ๐ธ | [๐ค](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-New-York/) |
| Palembang ๐ฎ๐ฉ | [๐ค](https://huggingface.co/datasets/CRUISEResearchGroup/Massive-STEPS-Palembang/) |
| Petaling Jaya ๐ฒ๐พ | [๐ค](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Petaling-Jaya/) |
| Sรฃo Paulo ๐ง๐ท | [๐ค](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Sao-Paulo/) |
| Shanghai ๐จ๐ณ | [๐ค](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Shanghai/) |
| Sydney ๐ฆ๐บ | [๐ค](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Sydney/) |
| Tangerang ๐ฎ๐ฉ | [๐ค](https://huggingface.co/datasets/CRUISEResearchGroup/Massive-STEPS-Tangerang/) |
| Tokyo ๐ฏ๐ต | [๐ค](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Tokyo/) |
### Dataset Sources
The dataset is derived from two sources:
1. **Semantic Trails Dataset**:
- Repository: [D2KLab/semantic-trails](https://github.com/D2KLab/semantic-trails)
- Paper: Monti, D., Palumbo, E., Rizzo, G., Troncy, R., Ehrhart, T., & Morisio, M. (2018). Semantic trails of city explorations: How do we live a city. *arXiv preprint [arXiv:1812.04367](https://arxiv.org/abs/1812.04367)*.
2. **Foursquare Open Source Places**:
- Repository: [foursquare/fsq-os-places](https://huggingface.co/datasets/foursquare/fsq-os-places)
- Documentation: [Foursquare Open Source Places](https://docs.foursquare.com/data-products/docs/access-fsq-os-places)
## Dataset Structure
```shell
.
โโโ tokyo_checkins_test.csv # test set check-ins
โโโ tokyo_checkins_train.csv # train set check-ins
โโโ tokyo_checkins_validation.csv # validation set check-ins
โโโ tokyo_checkins.csv # all check-ins
โโโ data # trajectory prompts
โย ย โโโ test-00000-of-00001.parquet
โย ย โโโ train-00000-of-00001.parquet
โย ย โโโ validation-00000-of-00001.parquet
โโโ README.md
```
### Data Instances
An example of entries in `tokyo_checkins.csv`:
```csv
trail_id,user_id,venue_id,latitude,longitude,name,address,venue_category,venue_category_id,venue_category_id_code,venue_city,venue_city_latitude,venue_city_longitude,venue_country,timestamp
2018_18009,901,1425,35.59492076661418,139.34504702908666,JR ๆฉๆฌ้ง
(JR Hashimoto Sta.),็ทๅบๆฉๆฌ6-1-25,Train Station,4bf58dd8d48988d129951735,59,Hachiลji,35.65583,139.32389,JP,2017-10-03 14:55:00
2018_18009,901,191,35.595137562150846,139.34373266637422,ไบฌ็ ๆฉๆฌ้ง
(KO45),็ทๅบๆฉๆฌ2-3-2,Train Station,4bf58dd8d48988d129951735,59,Hachiลji,35.65583,139.32389,JP,2017-10-03 14:59:00
2018_18010,901,38,35.64444469921653,139.35434304296533,ๅ้้ง
(Kitano Sta.) (KO33),ๆ่ถ็บ335-1,Train Station,4bf58dd8d48988d129951735,59,Hachiลji,35.65583,139.32389,JP,2017-10-04 11:57:00
2018_18010,901,3,35.65808032639735,139.34275103595496,ไบฌ็ๅ
ซ็ๅญ้ง
(Keiล-hachiลji Sta.),ๆ็ฅ็บ3-27-1,Train Station,4bf58dd8d48988d129951735,59,Hachiลji,35.65583,139.32389,JP,2017-10-04 12:00:00
2018_18010,901,2684,35.65829873991196,139.34315085411072,ใญใผใฝใณ ไบฌ็ๅ
ซ็ๅญ้ง
ๅๅบ,ๆ็ฅ็บ4-6-13,Convenience Store,4d954b0ea243a5684a65b473,215,Hachiลji,35.65583,139.32389,JP,2017-10-04 12:04:00
```
### Data Fields
| **Field** | **Description** |
| ------------------------ | ---------------------------------- |
| `trail_id` | Numeric identifier of trail |
| `user_id` | Numeric identifier of user |
| `venue_id` | Numeric identifier of POI venue |
| `latitude` | Latitude of POI venue |
| `longitude` | Longitude of POI venue |
| `name` | POI/business name |
| `address` | Street address of POI venue |
| `venue_category` | POI category name |
| `venue_category_id` | Foursquare Category ID |
| `venue_category_id_code` | Numeric identifier of category |
| `venue_city` | Administrative region name |
| `venue_city_latitude` | Latitude of administrative region |
| `venue_city_longitude` | Longitude of administrative region |
| `venue_country` | Country code |
| `timestamp` | Check-in timestamp |
### Dataset Statistics
| City | Users | Trails | POIs | Check-ins | #train | #val | #test |
| ----------- | :----: | :-----: | :---: | :-------: | :----: | :---: | :---: |
| Tokyo ๐ฏ๐ต | 764 | 5,482 | 4,725 | 13,839 | 3,836 | 549 | 1,097 |
## Additional Information
### License
```
Copyright 2024 Foursquare Labs, Inc. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License.
You may obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.
```
## ๐ Citation
If you find this repository useful for your research, please consider citing our paper:
```bibtex
@misc{wongso2025massivestepsmassivesemantictrajectories,
title = {Massive-STEPS: Massive Semantic Trajectories for Understanding POI Check-ins -- Dataset and Benchmarks},
author = {Wilson Wongso and Hao Xue and Flora D. Salim},
year = {2025},
eprint = {2505.11239},
archiveprefix = {arXiv},
primaryclass = {cs.LG},
url = {https://arxiv.org/abs/2505.11239}
}
```
### Contact
If you have any questions or suggestions, feel free to contact Wilson at `w.wongso(at)unsw(dot)edu(dot)au`. |