|
import json |
|
import datasets |
|
|
|
_DESCRIPTION = """\ |
|
LEGAR_BENCH is the first large-scale Korean LCR benchmark, covering 411 diverse crime types in queries over 1.2M legal cases. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/Chaeeun-Kim/LEGAR_BENCH" |
|
_LICENSE = "Apache 2.0" |
|
|
|
_URLS = { |
|
"standard": "data/standard_train.jsonl", |
|
"stricter": "data/stricter_train.jsonl", |
|
"stricter_by_difficulty": "data/stricter_by_difficulty_train.jsonl", |
|
} |
|
|
|
class LegarBench(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="standard", |
|
version=VERSION, |
|
description="Standard version of LEGAR BENCH", |
|
), |
|
datasets.BuilderConfig( |
|
name="stricter", |
|
version=VERSION, |
|
description="Stricter version of LEGAR BENCH", |
|
), |
|
datasets.BuilderConfig( |
|
name="stricter_by_difficulty", |
|
version=VERSION, |
|
description="Stricter version organized by difficulty", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "standard" |
|
|
|
def _info(self): |
|
features = datasets.Features({ |
|
"id": datasets.Value("int64"), |
|
"target_category": datasets.Value("string"), |
|
"category": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"question_id": datasets.Value("string"), |
|
"answer": datasets.Sequence(datasets.Value("string")), |
|
"evidence_id": datasets.Sequence(datasets.Value("string")), |
|
"difficulty": datasets.Value("string"), |
|
}) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
url = _URLS[self.config.name] |
|
data_file = dl_manager.download(url) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_file, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
with open(filepath, encoding="utf-8") as f: |
|
for key, line in enumerate(f): |
|
data = json.loads(line) |
|
|
|
yield key, { |
|
"id": int(data.get("id", 0)), |
|
"target_category": str(data.get("target_category", "")), |
|
"category": self._process_category(data.get("category", {})), |
|
"question": str(data.get("question", "")), |
|
"question_id": str(data.get("question_id", "")), |
|
"answer": self._process_list_field(data.get("answer", [])), |
|
"evidence_id": self._process_list_field(data.get("evidence_id", [])), |
|
"difficulty": str(data.get("difficulty", "")), |
|
} |
|
|
|
def _process_category(self, category): |
|
if isinstance(category, dict): |
|
return json.dumps(category, ensure_ascii=False) |
|
return str(category) |
|
|
|
def _process_list_field(self, field): |
|
if field is None: |
|
return [] |
|
return [str(item) if item is not None else "" for item in field] |