Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataset Card for KVRET
|
2 |
+
|
3 |
+
- **Repository:** https://nlp.stanford.edu/blog/a-new-multi-turn-multi-domain-task-oriented-dialogue-dataset/
|
4 |
+
- **Paper:** https://arxiv.org/pdf/1705.05414.pdf
|
5 |
+
- **Leaderboard:** None
|
6 |
+
- **Who transforms the dataset:** Qi Zhu(zhuq96 at gmail dot com)
|
7 |
+
|
8 |
+
### Dataset Summary
|
9 |
+
|
10 |
+
In an effort to help alleviate this problem, we release a corpus of 3,031 multi-turn dialogues in three distinct domains appropriate for an in-car assistant: calendar scheduling, weather information retrieval, and point-of-interest navigation. Our dialogues are grounded through knowledge bases ensuring that they are versatile in their natural language without being completely free form.
|
11 |
+
|
12 |
+
- **How to get the transformed data from original data:**
|
13 |
+
- Run `python preprocess.py` in the current directory.
|
14 |
+
- **Main changes of the transformation:**
|
15 |
+
- Create user `dialogue acts` and `state` according to original annotation.
|
16 |
+
- Put dialogue level kb into system side `db_results`.
|
17 |
+
- Skip repeated turns and empty dialogue.
|
18 |
+
- **Annotations:**
|
19 |
+
- user dialogue acts, state, db_results.
|
20 |
+
|
21 |
+
### Supported Tasks and Leaderboards
|
22 |
+
|
23 |
+
NLU, DST, Context-to-response
|
24 |
+
|
25 |
+
### Languages
|
26 |
+
|
27 |
+
English
|
28 |
+
|
29 |
+
### Data Splits
|
30 |
+
|
31 |
+
| split | dialogues | utterances | avg_utt | avg_tokens | avg_domains | cat slot match(state) | cat slot match(goal) | cat slot match(dialogue act) | non-cat slot span(dialogue act) |
|
32 |
+
|------------|-------------|--------------|-----------|--------------|---------------|-------------------------|------------------------|--------------------------------|-----------------------------------|
|
33 |
+
| train | 2424 | 12720 | 5.25 | 8.02 | 1 | - | - | - | 98.07 |
|
34 |
+
| validation | 302 | 1566 | 5.19 | 7.93 | 1 | - | - | - | 97.62 |
|
35 |
+
| test | 304 | 1627 | 5.35 | 7.7 | 1 | - | - | - | 97.72 |
|
36 |
+
| all | 3030 | 15913 | 5.25 | 7.98 | 1 | - | - | - | 97.99 |
|
37 |
+
|
38 |
+
3 domains: ['schedule', 'weather', 'navigate']
|
39 |
+
- **cat slot match**: how many values of categorical slots are in the possible values of ontology in percentage.
|
40 |
+
- **non-cat slot span**: how many values of non-categorical slots have span annotation in percentage.
|
41 |
+
|
42 |
+
|
43 |
+
### Citation
|
44 |
+
|
45 |
+
```
|
46 |
+
@inproceedings{eric-etal-2017-key,
|
47 |
+
title = "Key-Value Retrieval Networks for Task-Oriented Dialogue",
|
48 |
+
author = "Eric, Mihail and
|
49 |
+
Krishnan, Lakshmi and
|
50 |
+
Charette, Francois and
|
51 |
+
Manning, Christopher D.",
|
52 |
+
booktitle = "Proceedings of the 18th Annual {SIG}dial Meeting on Discourse and Dialogue",
|
53 |
+
year = "2017",
|
54 |
+
publisher = "Association for Computational Linguistics",
|
55 |
+
url = "https://aclanthology.org/W17-5506",
|
56 |
+
}
|
57 |
+
```
|
58 |
+
|
59 |
+
### Licensing Information
|
60 |
+
|
61 |
+
TODO
|