Convert indentation to spaces
Browse files- MANTRAGSC.py +223 -223
MANTRAGSC.py
CHANGED
|
@@ -29,34 +29,34 @@ from filelock import FileLock
|
|
| 29 |
|
| 30 |
_CITATION = """\
|
| 31 |
@article{10.1093/jamia/ocv037,
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
}
|
| 61 |
"""
|
| 62 |
|
|
@@ -73,216 +73,216 @@ _LICENSE = "CC_BY_4p0"
|
|
| 73 |
_URL = "https://files.ifi.uzh.ch/cl/mantra/gsc/GSC-v1.1.zip"
|
| 74 |
|
| 75 |
_LANGUAGES_2 = {
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
}
|
| 82 |
|
| 83 |
_DATASET_TYPES = {
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
}
|
| 88 |
|
| 89 |
@dataclass
|
| 90 |
class DrBenchmarkConfig(datasets.BuilderConfig):
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
|
| 97 |
class MANTRAGSC(datasets.GeneratorBasedBuilder):
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
|
| 153 |
# Fixes concurrency issues when extracting files after download has ended
|
| 154 |
# cf. https://github.com/huggingface/datasets/issues/4661#issuecomment-2792885416
|
| 155 |
with FileLock(Path(datasets.config.HF_CACHE_HOME) / "tmp_MANTRAGSC.lock"):
|
| 156 |
-
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
"data_dir": data_dir,
|
| 164 |
-
"split": "train",
|
| 165 |
-
},
|
| 166 |
-
),
|
| 167 |
-
datasets.SplitGenerator(
|
| 168 |
-
name=datasets.Split.VALIDATION,
|
| 169 |
-
gen_kwargs={
|
| 170 |
-
"data_dir": data_dir,
|
| 171 |
-
"split": "validation",
|
| 172 |
-
},
|
| 173 |
-
),
|
| 174 |
-
datasets.SplitGenerator(
|
| 175 |
-
name=datasets.Split.TEST,
|
| 176 |
-
gen_kwargs={
|
| 177 |
-
"data_dir": data_dir,
|
| 178 |
-
"split": "test",
|
| 179 |
-
},
|
| 180 |
-
),
|
| 181 |
-
]
|
| 182 |
-
|
| 183 |
-
def _generate_examples(self, data_dir, split):
|
| 184 |
-
|
| 185 |
-
with open(data_dir) as fd:
|
| 186 |
-
doc = xmltodict.parse(fd.read())
|
| 187 |
-
|
| 188 |
-
all_res = []
|
| 189 |
-
|
| 190 |
-
for d in doc["Corpus"]["document"]:
|
| 191 |
-
|
| 192 |
-
if type(d["unit"]) != type(list()):
|
| 193 |
-
d["unit"] = [d["unit"]]
|
| 194 |
-
|
| 195 |
-
for u in d["unit"]:
|
| 196 |
-
|
| 197 |
-
text = u["text"]
|
| 198 |
-
|
| 199 |
-
if "e" in u.keys():
|
| 200 |
-
|
| 201 |
-
if type(u["e"]) != type(list()):
|
| 202 |
-
u["e"] = [u["e"]]
|
| 203 |
-
|
| 204 |
-
tags = [{
|
| 205 |
-
"label": current["@grp"].upper(),
|
| 206 |
-
"offset_start": int(current["@offset"]),
|
| 207 |
-
"offset_end": int(current["@offset"]) + int(current["@len"]),
|
| 208 |
-
} for current in u["e"]]
|
| 209 |
-
|
| 210 |
-
else:
|
| 211 |
-
tags = []
|
| 212 |
-
|
| 213 |
-
_tokens = text.split(" ")
|
| 214 |
-
tokens = []
|
| 215 |
-
for i, t in enumerate(_tokens):
|
| 216 |
-
|
| 217 |
-
concat = " ".join(_tokens[0:i+1])
|
| 218 |
-
|
| 219 |
-
offset_start = len(concat) - len(t)
|
| 220 |
-
offset_end = len(concat)
|
| 221 |
-
|
| 222 |
-
tokens.append({
|
| 223 |
-
"token": t,
|
| 224 |
-
"offset_start": offset_start,
|
| 225 |
-
"offset_end": offset_end,
|
| 226 |
-
})
|
| 227 |
-
|
| 228 |
-
ner_tags = [["O", 0] for o in tokens]
|
| 229 |
-
|
| 230 |
-
for tag in tags:
|
| 231 |
-
|
| 232 |
-
cpt = 0
|
| 233 |
-
|
| 234 |
-
for idx, token in enumerate(tokens):
|
| 235 |
-
|
| 236 |
-
rtok = range(token["offset_start"], token["offset_end"]+1)
|
| 237 |
-
rtag = range(tag["offset_start"], tag["offset_end"]+1)
|
| 238 |
-
|
| 239 |
-
# Check if the ranges are overlapping
|
| 240 |
-
if bool(set(rtok) & set(rtag)):
|
| 241 |
-
|
| 242 |
-
# if ner_tags[idx] != "O" and ner_tags[idx] != tag['label']:
|
| 243 |
-
# print(f"{token} - currently: {ner_tags[idx]} - after: {tag['label']}")
|
| 244 |
-
|
| 245 |
-
if ner_tags[idx][0] == "O":
|
| 246 |
-
cpt += 1
|
| 247 |
-
ner_tags[idx][0] = tag["label"]
|
| 248 |
-
ner_tags[idx][1] = cpt
|
| 249 |
-
|
| 250 |
-
for i in range(len(ner_tags)):
|
| 251 |
-
|
| 252 |
-
tag = ner_tags[i][0]
|
| 253 |
-
|
| 254 |
-
if tag == "O":
|
| 255 |
-
continue
|
| 256 |
-
elif tag != "O" and ner_tags[i][1] == 1:
|
| 257 |
-
ner_tags[i][0] = "B-" + tag
|
| 258 |
-
elif tag != "O" and ner_tags[i][1] != 1:
|
| 259 |
-
ner_tags[i][0] = "I-" + tag
|
| 260 |
-
|
| 261 |
-
obj = {
|
| 262 |
-
"id": u["@id"],
|
| 263 |
-
"tokens": [t["token"] for t in tokens],
|
| 264 |
-
"ner_tags": [n[0] for n in ner_tags],
|
| 265 |
-
}
|
| 266 |
-
|
| 267 |
-
all_res.append(obj)
|
| 268 |
-
|
| 269 |
-
ids = [r["id"] for r in all_res]
|
| 270 |
|
| 271 |
-
|
| 272 |
-
random.shuffle(ids)
|
| 273 |
-
random.shuffle(ids)
|
| 274 |
-
random.shuffle(ids)
|
| 275 |
|
| 276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
elif split == "test":
|
| 283 |
-
allowed_ids = list(test)
|
| 284 |
-
|
| 285 |
-
for r in all_res:
|
| 286 |
-
identifier = r["id"]
|
| 287 |
-
if identifier in allowed_ids:
|
| 288 |
-
yield identifier, r
|
|
|
|
| 29 |
|
| 30 |
_CITATION = """\
|
| 31 |
@article{10.1093/jamia/ocv037,
|
| 32 |
+
author = {Kors, Jan A and Clematide, Simon and Akhondi,
|
| 33 |
+
Saber A and van Mulligen, Erik M and Rebholz-Schuhmann, Dietrich},
|
| 34 |
+
title = "{A multilingual gold-standard corpus for biomedical concept recognition: the Mantra GSC}",
|
| 35 |
+
journal = {Journal of the American Medical Informatics Association},
|
| 36 |
+
volume = {22},
|
| 37 |
+
number = {5},
|
| 38 |
+
pages = {948-956},
|
| 39 |
+
year = {2015},
|
| 40 |
+
month = {05},
|
| 41 |
+
abstract = "{Objective To create a multilingual gold-standard corpus for biomedical concept recognition.Materials
|
| 42 |
+
and methods We selected text units from different parallel corpora (Medline abstract titles, drug labels,
|
| 43 |
+
biomedical patent claims) in English, French, German, Spanish, and Dutch. Three annotators per language
|
| 44 |
+
independently annotated the biomedical concepts, based on a subset of the Unified Medical Language System and
|
| 45 |
+
covering a wide range of semantic groups. To reduce the annotation workload, automatically generated
|
| 46 |
+
preannotations were provided. Individual annotations were automatically harmonized and then adjudicated, and
|
| 47 |
+
cross-language consistency checks were carried out to arrive at the final annotations.Results The number of final
|
| 48 |
+
annotations was 5530. Inter-annotator agreement scores indicate good agreement (median F-score 0.79), and are
|
| 49 |
+
similar to those between individual annotators and the gold standard. The automatically generated harmonized
|
| 50 |
+
annotation set for each language performed equally well as the best annotator for that language.Discussion The use
|
| 51 |
+
of automatic preannotations, harmonized annotations, and parallel corpora helped to keep the manual annotation
|
| 52 |
+
efforts manageable. The inter-annotator agreement scores provide a reference standard for gauging the performance
|
| 53 |
+
of automatic annotation techniques.Conclusion To our knowledge, this is the first gold-standard corpus for
|
| 54 |
+
biomedical concept recognition in languages other than English. Other distinguishing features are the wide variety
|
| 55 |
+
of semantic groups that are being covered, and the diversity of text genres that were annotated.}",
|
| 56 |
+
issn = {1067-5027},
|
| 57 |
+
doi = {10.1093/jamia/ocv037},
|
| 58 |
+
url = {https://doi.org/10.1093/jamia/ocv037},
|
| 59 |
+
eprint = {https://academic.oup.com/jamia/article-pdf/22/5/948/34146393/ocv037.pdf},
|
| 60 |
}
|
| 61 |
"""
|
| 62 |
|
|
|
|
| 73 |
_URL = "https://files.ifi.uzh.ch/cl/mantra/gsc/GSC-v1.1.zip"
|
| 74 |
|
| 75 |
_LANGUAGES_2 = {
|
| 76 |
+
"es": "Spanish",
|
| 77 |
+
"fr": "French",
|
| 78 |
+
"de": "German",
|
| 79 |
+
"nl": "Dutch",
|
| 80 |
+
"en": "English",
|
| 81 |
}
|
| 82 |
|
| 83 |
_DATASET_TYPES = {
|
| 84 |
+
"emea": "EMEA",
|
| 85 |
+
"medline": "Medline",
|
| 86 |
+
"patents": "Patent",
|
| 87 |
}
|
| 88 |
|
| 89 |
@dataclass
|
| 90 |
class DrBenchmarkConfig(datasets.BuilderConfig):
|
| 91 |
+
name: str = None
|
| 92 |
+
version: datasets.Version = None
|
| 93 |
+
description: str = None
|
| 94 |
+
schema: str = None
|
| 95 |
+
subset_id: str = None
|
| 96 |
|
| 97 |
class MANTRAGSC(datasets.GeneratorBasedBuilder):
|
| 98 |
|
| 99 |
+
SOURCE_VERSION = datasets.Version("1.0.0")
|
| 100 |
+
|
| 101 |
+
BUILDER_CONFIGS = []
|
| 102 |
+
|
| 103 |
+
for language, dataset_type in product(_LANGUAGES_2, _DATASET_TYPES):
|
| 104 |
+
|
| 105 |
+
if dataset_type == "patents" and language in ["nl", "es"]:
|
| 106 |
+
continue
|
| 107 |
+
|
| 108 |
+
BUILDER_CONFIGS.append(
|
| 109 |
+
DrBenchmarkConfig(
|
| 110 |
+
name=f"{language}_{dataset_type}",
|
| 111 |
+
version=SOURCE_VERSION,
|
| 112 |
+
description=f"Mantra GSC {_LANGUAGES_2[language]} {_DATASET_TYPES[dataset_type]} source schema",
|
| 113 |
+
schema="source",
|
| 114 |
+
subset_id=f"{language}_{_DATASET_TYPES[dataset_type]}",
|
| 115 |
+
)
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
DEFAULT_CONFIG_NAME = "fr_medline"
|
| 119 |
+
|
| 120 |
+
def _info(self):
|
| 121 |
+
|
| 122 |
+
if self.config.name.find("emea") != -1:
|
| 123 |
+
names = ['B-ANAT', 'I-ANAT', 'I-PHEN', 'B-PROC', 'I-CHEM', 'I-PHYS', 'B-DEVI', 'O', 'B-PHYS', 'I-DEVI', 'B-OBJC', 'I-DISO', 'B-PHEN', 'I-LIVB', 'B-DISO', 'B-LIVB', 'B-CHEM', 'I-PROC']
|
| 124 |
+
elif self.config.name.find("medline") != -1:
|
| 125 |
+
names = ['B-ANAT', 'I-ANAT', 'B-PROC', 'I-CHEM', 'I-PHYS', 'B-GEOG', 'B-DEVI', 'O', 'B-PHYS', 'I-LIVB', 'B-OBJC', 'I-DISO', 'I-DEVI', 'B-PHEN', 'B-DISO', 'B-LIVB', 'B-CHEM', 'I-PROC']
|
| 126 |
+
elif self.config.name.find("patents") != -1:
|
| 127 |
+
names = ['B-ANAT', 'I-ANAT', 'B-PROC', 'I-CHEM', 'I-PHYS', 'B-DEVI', 'O', 'I-LIVB', 'B-OBJC', 'I-DISO', 'B-PHEN', 'I-PROC', 'B-DISO', 'I-DEVI', 'B-LIVB', 'B-CHEM', 'B-PHYS']
|
| 128 |
+
|
| 129 |
+
features = datasets.Features(
|
| 130 |
+
{
|
| 131 |
+
"id": datasets.Value("string"),
|
| 132 |
+
"tokens": [datasets.Value("string")],
|
| 133 |
+
"ner_tags": datasets.Sequence(
|
| 134 |
+
datasets.features.ClassLabel(
|
| 135 |
+
names = names,
|
| 136 |
+
)
|
| 137 |
+
),
|
| 138 |
+
}
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
return datasets.DatasetInfo(
|
| 142 |
+
description=_DESCRIPTION,
|
| 143 |
+
features=features,
|
| 144 |
+
homepage=_HOMEPAGE,
|
| 145 |
+
license=str(_LICENSE),
|
| 146 |
+
citation=_CITATION,
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
def _split_generators(self, dl_manager):
|
| 150 |
+
|
| 151 |
+
language, dataset_type = self.config.name.split("_")
|
| 152 |
|
| 153 |
# Fixes concurrency issues when extracting files after download has ended
|
| 154 |
# cf. https://github.com/huggingface/datasets/issues/4661#issuecomment-2792885416
|
| 155 |
with FileLock(Path(datasets.config.HF_CACHE_HOME) / "tmp_MANTRAGSC.lock"):
|
| 156 |
+
data_dir = dl_manager.download_and_extract(_URL)
|
| 157 |
+
data_dir = Path(data_dir) / "GSC-v1.1" / f"{_DATASET_TYPES[dataset_type]}_GSC_{language}_man.xml"
|
| 158 |
+
|
| 159 |
+
return [
|
| 160 |
+
datasets.SplitGenerator(
|
| 161 |
+
name=datasets.Split.TRAIN,
|
| 162 |
+
gen_kwargs={
|
| 163 |
+
"data_dir": data_dir,
|
| 164 |
+
"split": "train",
|
| 165 |
+
},
|
| 166 |
+
),
|
| 167 |
+
datasets.SplitGenerator(
|
| 168 |
+
name=datasets.Split.VALIDATION,
|
| 169 |
+
gen_kwargs={
|
| 170 |
+
"data_dir": data_dir,
|
| 171 |
+
"split": "validation",
|
| 172 |
+
},
|
| 173 |
+
),
|
| 174 |
+
datasets.SplitGenerator(
|
| 175 |
+
name=datasets.Split.TEST,
|
| 176 |
+
gen_kwargs={
|
| 177 |
+
"data_dir": data_dir,
|
| 178 |
+
"split": "test",
|
| 179 |
+
},
|
| 180 |
+
),
|
| 181 |
+
]
|
| 182 |
+
|
| 183 |
+
def _generate_examples(self, data_dir, split):
|
| 184 |
+
|
| 185 |
+
with open(data_dir) as fd:
|
| 186 |
+
doc = xmltodict.parse(fd.read())
|
| 187 |
+
|
| 188 |
+
all_res = []
|
| 189 |
+
|
| 190 |
+
for d in doc["Corpus"]["document"]:
|
| 191 |
+
|
| 192 |
+
if type(d["unit"]) != type(list()):
|
| 193 |
+
d["unit"] = [d["unit"]]
|
| 194 |
+
|
| 195 |
+
for u in d["unit"]:
|
| 196 |
+
|
| 197 |
+
text = u["text"]
|
| 198 |
+
|
| 199 |
+
if "e" in u.keys():
|
| 200 |
+
|
| 201 |
+
if type(u["e"]) != type(list()):
|
| 202 |
+
u["e"] = [u["e"]]
|
| 203 |
+
|
| 204 |
+
tags = [{
|
| 205 |
+
"label": current["@grp"].upper(),
|
| 206 |
+
"offset_start": int(current["@offset"]),
|
| 207 |
+
"offset_end": int(current["@offset"]) + int(current["@len"]),
|
| 208 |
+
} for current in u["e"]]
|
| 209 |
+
|
| 210 |
+
else:
|
| 211 |
+
tags = []
|
| 212 |
+
|
| 213 |
+
_tokens = text.split(" ")
|
| 214 |
+
tokens = []
|
| 215 |
+
for i, t in enumerate(_tokens):
|
| 216 |
+
|
| 217 |
+
concat = " ".join(_tokens[0:i+1])
|
| 218 |
+
|
| 219 |
+
offset_start = len(concat) - len(t)
|
| 220 |
+
offset_end = len(concat)
|
| 221 |
+
|
| 222 |
+
tokens.append({
|
| 223 |
+
"token": t,
|
| 224 |
+
"offset_start": offset_start,
|
| 225 |
+
"offset_end": offset_end,
|
| 226 |
+
})
|
| 227 |
+
|
| 228 |
+
ner_tags = [["O", 0] for o in tokens]
|
| 229 |
+
|
| 230 |
+
for tag in tags:
|
| 231 |
+
|
| 232 |
+
cpt = 0
|
| 233 |
+
|
| 234 |
+
for idx, token in enumerate(tokens):
|
| 235 |
+
|
| 236 |
+
rtok = range(token["offset_start"], token["offset_end"]+1)
|
| 237 |
+
rtag = range(tag["offset_start"], tag["offset_end"]+1)
|
| 238 |
+
|
| 239 |
+
# Check if the ranges are overlapping
|
| 240 |
+
if bool(set(rtok) & set(rtag)):
|
| 241 |
+
|
| 242 |
+
# if ner_tags[idx] != "O" and ner_tags[idx] != tag['label']:
|
| 243 |
+
# print(f"{token} - currently: {ner_tags[idx]} - after: {tag['label']}")
|
| 244 |
+
|
| 245 |
+
if ner_tags[idx][0] == "O":
|
| 246 |
+
cpt += 1
|
| 247 |
+
ner_tags[idx][0] = tag["label"]
|
| 248 |
+
ner_tags[idx][1] = cpt
|
| 249 |
+
|
| 250 |
+
for i in range(len(ner_tags)):
|
| 251 |
+
|
| 252 |
+
tag = ner_tags[i][0]
|
| 253 |
+
|
| 254 |
+
if tag == "O":
|
| 255 |
+
continue
|
| 256 |
+
elif tag != "O" and ner_tags[i][1] == 1:
|
| 257 |
+
ner_tags[i][0] = "B-" + tag
|
| 258 |
+
elif tag != "O" and ner_tags[i][1] != 1:
|
| 259 |
+
ner_tags[i][0] = "I-" + tag
|
| 260 |
+
|
| 261 |
+
obj = {
|
| 262 |
+
"id": u["@id"],
|
| 263 |
+
"tokens": [t["token"] for t in tokens],
|
| 264 |
+
"ner_tags": [n[0] for n in ner_tags],
|
| 265 |
+
}
|
| 266 |
+
|
| 267 |
+
all_res.append(obj)
|
| 268 |
+
|
| 269 |
+
ids = [r["id"] for r in all_res]
|
| 270 |
|
| 271 |
+
random.seed(4)
|
| 272 |
+
random.shuffle(ids)
|
| 273 |
+
random.shuffle(ids)
|
| 274 |
+
random.shuffle(ids)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
|
| 276 |
+
train, validation, test = np.split(ids, [int(len(ids)*0.70), int(len(ids)*0.80)])
|
|
|
|
|
|
|
|
|
|
| 277 |
|
| 278 |
+
if split == "train":
|
| 279 |
+
allowed_ids = list(train)
|
| 280 |
+
elif split == "validation":
|
| 281 |
+
allowed_ids = list(validation)
|
| 282 |
+
elif split == "test":
|
| 283 |
+
allowed_ids = list(test)
|
| 284 |
|
| 285 |
+
for r in all_res:
|
| 286 |
+
identifier = r["id"]
|
| 287 |
+
if identifier in allowed_ids:
|
| 288 |
+
yield identifier, r
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|