--- license: cc-by-nc-4.0 task_categories: - image-classification language: - en tags: - medical size_categories: - 10K Description ## Dataset Structure The dataset is organized into the following main directories: - `training/`: Training data - `validation-public/`: Public validation data - `validation-hidden/`: Hidden validation data (answer not released) - `testing/`: Hidden testing data (not released) ## Dataset Statistics - **Total datasets:** 19 - **Medical imaging modalities:** 8 - **Task types:** 10 - **Total images:** 50996 - **Total questions:** 58112 - **Data sources:** 9 ## Modalities The dataset includes the following medical imaging modalities: Clinical, Dermatology, Endoscopy, Mammography, Microscopy, Retinography, Ultrasound, Xray ## Tasks The dataset supports the following tasks: Classification, Counting, Detection, Multi-label Classification, Regression, Report_Generation ## Dataset Overview | Dataset | Modality | Images | Tasks | Questions | Sources | |---------|----------|--------|-------|-----------|---------| | Dermatology_bcn20000 | Dermatology | 12413 | Classification | 3576 | https://doi.org/10.6084/m9.figshare.24140028.v1 | | Xray_IUXRay | Xray | 5908 | Report_Generation | 9742 | https://doi.org/10.1093/jamia/ocv080 | | Ultrasound_iugc | Ultrasound | 5125 | Classification, Detection, Regression | 13302 | https://codalab.lisn.upsaclay.fr/competitions/18413 | | Xray_chestdr | Xray | 4848 | Classification, Multi-label Classification | 4848 | https://doi.org/10.6084/m9.figshare.c.6476047.v1 | | Endoscopy_endo | Endoscopy | 3865 | Classification | 80 | https://doi.org/10.6084/m9.figshare.c.6476047.v1 | | Mammography_CMMD | Mammography | 3582 | Classification | 4493 | https://doi.org/10.7937/tcia.eqde-4b16 | | Xray_periapical | Xray | 2317 | Classification, Multi-label Classification | 4656 | Private | | Clinical_neojaundice | Clinical | 2235 | Classification | 745 | https://doi.org/10.6084/m9.figshare.c.6476047.v1 | | Microscopy_chromosome | Microscopy | 1785 | instance_detection | 1785 | Private | | Retinography_retino | Retinography | 1392 | Classification | 1392 | https://doi.org/10.6084/m9.figshare.c.6476047.v1 | | Microscopy_neurips22cell | Microscopy | 1100 | Counting | 1100 | N/A | | Microscopy_bone_marrow | Microscopy | 1045 | classification | 1045 | PRIVATE | | Xray_boneresorption | Xray | 1004 | regression | 1004 | PRIVATE | | Xray_dental | Xray | 1001 | Classification | 5998 | Private | | Retinography_fundus | Retinography | 987 | Classification | 1974 | Private | | Ultrasound_BUSI | Ultrasound | 780 | classification | 780 | https://doi.org/10.1016/j.dib.2019.104863 | | Ultrasound_BUS-UCLM | Ultrasound | 682 | classification | 682 | https://doi.org/10.1038/s41597-025-04562-3 | | Ultrasound_BUSI-det | Ultrasound | 647 | detection | 647 | https://doi.org/10.1016/j.dib.2019.104863 | | Ultrasound_BUS-UCLM-det | Ultrasound | 263 | detection | 263 | https://doi.org/10.1038/s41597-025-04562-3 | **Note:** The numbers shown in the above table include data from all subsets: training, validation-public, validation-hidden, and testing. ## Directory Structure Each dataset typically follows this structure: ``` modality/ └── dataset_name/ ├── images[Tr|Val|Ts]/ │ └── image_files.png └── dataset_questions_[train|val].json ``` ## Question Format Questions are formatted as JSON arrays with the following structure: ```json [ { "TaskType": "Classification", "Modality": "X-ray", "ImageName": "imagesTr/image001.png", "Question": "What abnormality is visible in this image?", "Answer": "Fracture", "Split": "train" } ] ```