files updation
Browse files- gem_trainer.py +248 -0
- requirements.txt +6 -0
gem_trainer.py
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ================================================
|
2 |
+
# GEM Model Trainer & Evaluator - Callable Version
|
3 |
+
# ================================================
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.quantization
|
7 |
+
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification, get_linear_schedule_with_warmup
|
8 |
+
from sklearn.cluster import MiniBatchKMeans
|
9 |
+
from torch.utils.data import DataLoader
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from tqdm import tqdm
|
13 |
+
import numpy as np
|
14 |
+
|
15 |
+
def run_gem_pipeline(
|
16 |
+
dataset,
|
17 |
+
model_name="bert-base-uncased",
|
18 |
+
num_classes=77,
|
19 |
+
num_epochs=3,
|
20 |
+
batch_size=16,
|
21 |
+
learning_rate=2e-5,
|
22 |
+
max_seq_length=128,
|
23 |
+
gradient_accum_steps=2,
|
24 |
+
cluster_size=256,
|
25 |
+
threshold=0.65
|
26 |
+
):
|
27 |
+
"""
|
28 |
+
Runs the GEM model training & evaluation pipeline on a custom dataset.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
dataset: HuggingFace DatasetDict or custom dataset (must have 'train' and 'test').
|
32 |
+
model_name: Name of the transformer model.
|
33 |
+
num_classes: Number of output classes.
|
34 |
+
num_epochs: Training epochs.
|
35 |
+
batch_size: Batch size for dataloaders.
|
36 |
+
learning_rate: Learning rate for optimizer.
|
37 |
+
max_seq_length: Max sequence length for tokenizer.
|
38 |
+
gradient_accum_steps: Gradient accumulation steps.
|
39 |
+
cluster_size: Number of clusters for routing.
|
40 |
+
threshold: Routing threshold.
|
41 |
+
|
42 |
+
Returns:
|
43 |
+
final_accuracy: Final evaluation accuracy on test set.
|
44 |
+
avg_loss: Average training loss.
|
45 |
+
"""
|
46 |
+
|
47 |
+
# ========================
|
48 |
+
# Config
|
49 |
+
# ========================
|
50 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
51 |
+
hidden_size = 768
|
52 |
+
num_heads = 12
|
53 |
+
|
54 |
+
# ========================
|
55 |
+
# Tokenizer & Dataloaders
|
56 |
+
# ========================
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
58 |
+
|
59 |
+
def tokenize_fn(examples):
|
60 |
+
return tokenizer(
|
61 |
+
examples['text'],
|
62 |
+
padding='max_length',
|
63 |
+
truncation=True,
|
64 |
+
max_length=max_seq_length
|
65 |
+
)
|
66 |
+
|
67 |
+
dataset = dataset.map(tokenize_fn, batched=True)
|
68 |
+
|
69 |
+
def collate_fn(batch):
|
70 |
+
return {
|
71 |
+
'input_ids': torch.stack([torch.tensor(x['input_ids']) for x in batch]),
|
72 |
+
'attention_mask': torch.stack([torch.tensor(x['attention_mask']) for x in batch]),
|
73 |
+
'labels': torch.tensor([x['label'] for x in batch])
|
74 |
+
}
|
75 |
+
|
76 |
+
train_loader = DataLoader(
|
77 |
+
dataset['train'],
|
78 |
+
batch_size=batch_size,
|
79 |
+
shuffle=True,
|
80 |
+
collate_fn=collate_fn
|
81 |
+
)
|
82 |
+
|
83 |
+
test_loader = DataLoader(
|
84 |
+
dataset['test'],
|
85 |
+
batch_size=batch_size,
|
86 |
+
collate_fn=collate_fn
|
87 |
+
)
|
88 |
+
|
89 |
+
# ========================
|
90 |
+
# GEM Model (Modular)
|
91 |
+
# ========================
|
92 |
+
class QuantizedBERT(nn.Module):
|
93 |
+
def __init__(self):
|
94 |
+
super().__init__()
|
95 |
+
self.bert = AutoModel.from_pretrained(model_name)
|
96 |
+
self.quant = torch.quantization.QuantStub()
|
97 |
+
self.dequant = torch.quantization.DeQuantStub()
|
98 |
+
|
99 |
+
def forward(self, input_ids, attention_mask=None):
|
100 |
+
outputs = self.bert(input_ids, attention_mask=attention_mask)
|
101 |
+
return self.dequant(self.quant(outputs.last_hidden_state))
|
102 |
+
|
103 |
+
class TokenRouter(nn.Module):
|
104 |
+
def __init__(self):
|
105 |
+
super().__init__()
|
106 |
+
self.clusterer = MiniBatchKMeans(n_clusters=cluster_size)
|
107 |
+
self.W_r = nn.Parameter(torch.randn(num_classes, hidden_size))
|
108 |
+
self.threshold = threshold
|
109 |
+
|
110 |
+
def forward(self, x):
|
111 |
+
cluster_input = x.detach().cpu().numpy().reshape(-1, x.shape[-1])
|
112 |
+
cluster_ids = self.clusterer.fit_predict(cluster_input)
|
113 |
+
cluster_ids = torch.tensor(cluster_ids, device=device).reshape(x.shape[:2])
|
114 |
+
|
115 |
+
domain_logits = torch.einsum('bsh,nh->bsn', x, self.W_r.to(x.device))
|
116 |
+
domain_probs = F.softmax(domain_logits, dim=-1)
|
117 |
+
routing_mask = (domain_probs.max(-1).values > self.threshold).long()
|
118 |
+
|
119 |
+
return domain_probs, routing_mask, cluster_ids
|
120 |
+
|
121 |
+
class SCAR(nn.Module):
|
122 |
+
def __init__(self):
|
123 |
+
super().__init__()
|
124 |
+
self.num_heads = num_heads
|
125 |
+
self.head_dim = hidden_size // num_heads
|
126 |
+
self.qkv = nn.Linear(hidden_size, 3 * hidden_size)
|
127 |
+
self.out = nn.Linear(hidden_size, hidden_size)
|
128 |
+
|
129 |
+
def create_mask(self, cluster_ids, routing_mask):
|
130 |
+
cluster_mask = (cluster_ids.unsqueeze(-1) == cluster_ids.unsqueeze(-2))
|
131 |
+
domain_mask = (routing_mask.unsqueeze(-1) == routing_mask.unsqueeze(-2))
|
132 |
+
return cluster_mask | domain_mask
|
133 |
+
|
134 |
+
def forward(self, x, cluster_ids, routing_mask):
|
135 |
+
B, N, _ = x.shape
|
136 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
137 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
138 |
+
|
139 |
+
attn = (q @ k.transpose(-2, -1)) / np.sqrt(self.head_dim)
|
140 |
+
mask = self.create_mask(cluster_ids, routing_mask).unsqueeze(1)
|
141 |
+
attn = attn.masked_fill(~mask, -1e9)
|
142 |
+
|
143 |
+
attn = F.softmax(attn, dim=-1)
|
144 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
145 |
+
return self.out(x)
|
146 |
+
|
147 |
+
class GEM(nn.Module):
|
148 |
+
def __init__(self):
|
149 |
+
super().__init__()
|
150 |
+
self.bert = QuantizedBERT()
|
151 |
+
self.router = TokenRouter()
|
152 |
+
self.scar = SCAR()
|
153 |
+
self.classifier = nn.Linear(hidden_size, num_classes)
|
154 |
+
|
155 |
+
self.teacher = AutoModelForSequenceClassification.from_pretrained(
|
156 |
+
model_name, num_labels=num_classes
|
157 |
+
).eval().to(device).requires_grad_(False)
|
158 |
+
|
159 |
+
def forward(self, input_ids, attention_mask=None):
|
160 |
+
x = self.bert(input_ids, attention_mask)
|
161 |
+
domain_probs, routing_mask, cluster_ids = self.router(x)
|
162 |
+
x = self.scar(x, cluster_ids, routing_mask)
|
163 |
+
return self.classifier(x[:, 0, :])
|
164 |
+
|
165 |
+
def qakp_loss(self, outputs, labels, input_ids):
|
166 |
+
task_loss = F.cross_entropy(outputs, labels)
|
167 |
+
quant_error = F.mse_loss(self.bert.quant(self.bert.dequant(outputs)), outputs)
|
168 |
+
|
169 |
+
with torch.no_grad():
|
170 |
+
teacher_logits = self.teacher(input_ids).logits
|
171 |
+
|
172 |
+
kd_loss = F.kl_div(
|
173 |
+
F.log_softmax(outputs, dim=-1),
|
174 |
+
F.softmax(teacher_logits, dim=-1),
|
175 |
+
reduction='batchmean'
|
176 |
+
)
|
177 |
+
|
178 |
+
return task_loss + 0.3 * quant_error + 0.7 * kd_loss
|
179 |
+
|
180 |
+
# ========================
|
181 |
+
# Training Setup
|
182 |
+
# ========================
|
183 |
+
model = GEM().to(device)
|
184 |
+
|
185 |
+
if torch.cuda.device_count() > 1:
|
186 |
+
model = nn.DataParallel(model, device_ids=list(range(torch.cuda.device_count())))
|
187 |
+
|
188 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
|
189 |
+
scheduler = get_linear_schedule_with_warmup(
|
190 |
+
optimizer,
|
191 |
+
num_warmup_steps=100,
|
192 |
+
num_training_steps=len(train_loader) * num_epochs
|
193 |
+
)
|
194 |
+
|
195 |
+
# ========================
|
196 |
+
# Training Loop
|
197 |
+
# ========================
|
198 |
+
model.train()
|
199 |
+
avg_loss = 0
|
200 |
+
|
201 |
+
for epoch in range(num_epochs):
|
202 |
+
total_loss = 0
|
203 |
+
|
204 |
+
for step, batch in enumerate(tqdm(train_loader)):
|
205 |
+
input_ids = batch['input_ids'].to(device)
|
206 |
+
attention_mask = batch['attention_mask'].to(device)
|
207 |
+
labels = batch['labels'].to(device)
|
208 |
+
|
209 |
+
outputs = model(input_ids, attention_mask)
|
210 |
+
loss = model.module.qakp_loss(outputs, labels, input_ids) if hasattr(model, 'module') else model.qakp_loss(outputs, labels, input_ids)
|
211 |
+
|
212 |
+
loss.backward()
|
213 |
+
|
214 |
+
if (step + 1) % gradient_accum_steps == 0:
|
215 |
+
optimizer.step()
|
216 |
+
scheduler.step()
|
217 |
+
optimizer.zero_grad()
|
218 |
+
|
219 |
+
total_loss += loss.item()
|
220 |
+
|
221 |
+
avg_loss = total_loss / len(train_loader)
|
222 |
+
print(f"Epoch {epoch+1}/{num_epochs} | Avg Loss: {avg_loss:.4f}")
|
223 |
+
|
224 |
+
# ========================
|
225 |
+
# Evaluation Loop
|
226 |
+
# ========================
|
227 |
+
model.eval()
|
228 |
+
correct = total = 0
|
229 |
+
|
230 |
+
with torch.no_grad():
|
231 |
+
for batch in tqdm(test_loader):
|
232 |
+
input_ids = batch['input_ids'].to(device)
|
233 |
+
attention_mask = batch['attention_mask'].to(device)
|
234 |
+
labels = batch['labels'].to(device)
|
235 |
+
|
236 |
+
outputs = model(input_ids, attention_mask)
|
237 |
+
preds = outputs.argmax(dim=-1)
|
238 |
+
|
239 |
+
correct += (preds == labels).sum().item()
|
240 |
+
total += labels.size(0)
|
241 |
+
|
242 |
+
final_accuracy = 100 * correct / total
|
243 |
+
print(f"Final Accuracy: {final_accuracy:.2f}%")
|
244 |
+
|
245 |
+
return {
|
246 |
+
'accuracy': final_accuracy,
|
247 |
+
'average_loss': avg_loss
|
248 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
scikit-learn
|
4 |
+
tqdm
|
5 |
+
numpy
|
6 |
+
datasets
|