files updation
Browse files- gem_trainer.py +248 -0
- requirements.txt +6 -0
gem_trainer.py
ADDED
|
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ================================================
|
| 2 |
+
# GEM Model Trainer & Evaluator - Callable Version
|
| 3 |
+
# ================================================
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.quantization
|
| 7 |
+
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification, get_linear_schedule_with_warmup
|
| 8 |
+
from sklearn.cluster import MiniBatchKMeans
|
| 9 |
+
from torch.utils.data import DataLoader
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
from tqdm import tqdm
|
| 13 |
+
import numpy as np
|
| 14 |
+
|
| 15 |
+
def run_gem_pipeline(
|
| 16 |
+
dataset,
|
| 17 |
+
model_name="bert-base-uncased",
|
| 18 |
+
num_classes=77,
|
| 19 |
+
num_epochs=3,
|
| 20 |
+
batch_size=16,
|
| 21 |
+
learning_rate=2e-5,
|
| 22 |
+
max_seq_length=128,
|
| 23 |
+
gradient_accum_steps=2,
|
| 24 |
+
cluster_size=256,
|
| 25 |
+
threshold=0.65
|
| 26 |
+
):
|
| 27 |
+
"""
|
| 28 |
+
Runs the GEM model training & evaluation pipeline on a custom dataset.
|
| 29 |
+
|
| 30 |
+
Args:
|
| 31 |
+
dataset: HuggingFace DatasetDict or custom dataset (must have 'train' and 'test').
|
| 32 |
+
model_name: Name of the transformer model.
|
| 33 |
+
num_classes: Number of output classes.
|
| 34 |
+
num_epochs: Training epochs.
|
| 35 |
+
batch_size: Batch size for dataloaders.
|
| 36 |
+
learning_rate: Learning rate for optimizer.
|
| 37 |
+
max_seq_length: Max sequence length for tokenizer.
|
| 38 |
+
gradient_accum_steps: Gradient accumulation steps.
|
| 39 |
+
cluster_size: Number of clusters for routing.
|
| 40 |
+
threshold: Routing threshold.
|
| 41 |
+
|
| 42 |
+
Returns:
|
| 43 |
+
final_accuracy: Final evaluation accuracy on test set.
|
| 44 |
+
avg_loss: Average training loss.
|
| 45 |
+
"""
|
| 46 |
+
|
| 47 |
+
# ========================
|
| 48 |
+
# Config
|
| 49 |
+
# ========================
|
| 50 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 51 |
+
hidden_size = 768
|
| 52 |
+
num_heads = 12
|
| 53 |
+
|
| 54 |
+
# ========================
|
| 55 |
+
# Tokenizer & Dataloaders
|
| 56 |
+
# ========================
|
| 57 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 58 |
+
|
| 59 |
+
def tokenize_fn(examples):
|
| 60 |
+
return tokenizer(
|
| 61 |
+
examples['text'],
|
| 62 |
+
padding='max_length',
|
| 63 |
+
truncation=True,
|
| 64 |
+
max_length=max_seq_length
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
dataset = dataset.map(tokenize_fn, batched=True)
|
| 68 |
+
|
| 69 |
+
def collate_fn(batch):
|
| 70 |
+
return {
|
| 71 |
+
'input_ids': torch.stack([torch.tensor(x['input_ids']) for x in batch]),
|
| 72 |
+
'attention_mask': torch.stack([torch.tensor(x['attention_mask']) for x in batch]),
|
| 73 |
+
'labels': torch.tensor([x['label'] for x in batch])
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
train_loader = DataLoader(
|
| 77 |
+
dataset['train'],
|
| 78 |
+
batch_size=batch_size,
|
| 79 |
+
shuffle=True,
|
| 80 |
+
collate_fn=collate_fn
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
test_loader = DataLoader(
|
| 84 |
+
dataset['test'],
|
| 85 |
+
batch_size=batch_size,
|
| 86 |
+
collate_fn=collate_fn
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
# ========================
|
| 90 |
+
# GEM Model (Modular)
|
| 91 |
+
# ========================
|
| 92 |
+
class QuantizedBERT(nn.Module):
|
| 93 |
+
def __init__(self):
|
| 94 |
+
super().__init__()
|
| 95 |
+
self.bert = AutoModel.from_pretrained(model_name)
|
| 96 |
+
self.quant = torch.quantization.QuantStub()
|
| 97 |
+
self.dequant = torch.quantization.DeQuantStub()
|
| 98 |
+
|
| 99 |
+
def forward(self, input_ids, attention_mask=None):
|
| 100 |
+
outputs = self.bert(input_ids, attention_mask=attention_mask)
|
| 101 |
+
return self.dequant(self.quant(outputs.last_hidden_state))
|
| 102 |
+
|
| 103 |
+
class TokenRouter(nn.Module):
|
| 104 |
+
def __init__(self):
|
| 105 |
+
super().__init__()
|
| 106 |
+
self.clusterer = MiniBatchKMeans(n_clusters=cluster_size)
|
| 107 |
+
self.W_r = nn.Parameter(torch.randn(num_classes, hidden_size))
|
| 108 |
+
self.threshold = threshold
|
| 109 |
+
|
| 110 |
+
def forward(self, x):
|
| 111 |
+
cluster_input = x.detach().cpu().numpy().reshape(-1, x.shape[-1])
|
| 112 |
+
cluster_ids = self.clusterer.fit_predict(cluster_input)
|
| 113 |
+
cluster_ids = torch.tensor(cluster_ids, device=device).reshape(x.shape[:2])
|
| 114 |
+
|
| 115 |
+
domain_logits = torch.einsum('bsh,nh->bsn', x, self.W_r.to(x.device))
|
| 116 |
+
domain_probs = F.softmax(domain_logits, dim=-1)
|
| 117 |
+
routing_mask = (domain_probs.max(-1).values > self.threshold).long()
|
| 118 |
+
|
| 119 |
+
return domain_probs, routing_mask, cluster_ids
|
| 120 |
+
|
| 121 |
+
class SCAR(nn.Module):
|
| 122 |
+
def __init__(self):
|
| 123 |
+
super().__init__()
|
| 124 |
+
self.num_heads = num_heads
|
| 125 |
+
self.head_dim = hidden_size // num_heads
|
| 126 |
+
self.qkv = nn.Linear(hidden_size, 3 * hidden_size)
|
| 127 |
+
self.out = nn.Linear(hidden_size, hidden_size)
|
| 128 |
+
|
| 129 |
+
def create_mask(self, cluster_ids, routing_mask):
|
| 130 |
+
cluster_mask = (cluster_ids.unsqueeze(-1) == cluster_ids.unsqueeze(-2))
|
| 131 |
+
domain_mask = (routing_mask.unsqueeze(-1) == routing_mask.unsqueeze(-2))
|
| 132 |
+
return cluster_mask | domain_mask
|
| 133 |
+
|
| 134 |
+
def forward(self, x, cluster_ids, routing_mask):
|
| 135 |
+
B, N, _ = x.shape
|
| 136 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
| 137 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
| 138 |
+
|
| 139 |
+
attn = (q @ k.transpose(-2, -1)) / np.sqrt(self.head_dim)
|
| 140 |
+
mask = self.create_mask(cluster_ids, routing_mask).unsqueeze(1)
|
| 141 |
+
attn = attn.masked_fill(~mask, -1e9)
|
| 142 |
+
|
| 143 |
+
attn = F.softmax(attn, dim=-1)
|
| 144 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
| 145 |
+
return self.out(x)
|
| 146 |
+
|
| 147 |
+
class GEM(nn.Module):
|
| 148 |
+
def __init__(self):
|
| 149 |
+
super().__init__()
|
| 150 |
+
self.bert = QuantizedBERT()
|
| 151 |
+
self.router = TokenRouter()
|
| 152 |
+
self.scar = SCAR()
|
| 153 |
+
self.classifier = nn.Linear(hidden_size, num_classes)
|
| 154 |
+
|
| 155 |
+
self.teacher = AutoModelForSequenceClassification.from_pretrained(
|
| 156 |
+
model_name, num_labels=num_classes
|
| 157 |
+
).eval().to(device).requires_grad_(False)
|
| 158 |
+
|
| 159 |
+
def forward(self, input_ids, attention_mask=None):
|
| 160 |
+
x = self.bert(input_ids, attention_mask)
|
| 161 |
+
domain_probs, routing_mask, cluster_ids = self.router(x)
|
| 162 |
+
x = self.scar(x, cluster_ids, routing_mask)
|
| 163 |
+
return self.classifier(x[:, 0, :])
|
| 164 |
+
|
| 165 |
+
def qakp_loss(self, outputs, labels, input_ids):
|
| 166 |
+
task_loss = F.cross_entropy(outputs, labels)
|
| 167 |
+
quant_error = F.mse_loss(self.bert.quant(self.bert.dequant(outputs)), outputs)
|
| 168 |
+
|
| 169 |
+
with torch.no_grad():
|
| 170 |
+
teacher_logits = self.teacher(input_ids).logits
|
| 171 |
+
|
| 172 |
+
kd_loss = F.kl_div(
|
| 173 |
+
F.log_softmax(outputs, dim=-1),
|
| 174 |
+
F.softmax(teacher_logits, dim=-1),
|
| 175 |
+
reduction='batchmean'
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
return task_loss + 0.3 * quant_error + 0.7 * kd_loss
|
| 179 |
+
|
| 180 |
+
# ========================
|
| 181 |
+
# Training Setup
|
| 182 |
+
# ========================
|
| 183 |
+
model = GEM().to(device)
|
| 184 |
+
|
| 185 |
+
if torch.cuda.device_count() > 1:
|
| 186 |
+
model = nn.DataParallel(model, device_ids=list(range(torch.cuda.device_count())))
|
| 187 |
+
|
| 188 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
|
| 189 |
+
scheduler = get_linear_schedule_with_warmup(
|
| 190 |
+
optimizer,
|
| 191 |
+
num_warmup_steps=100,
|
| 192 |
+
num_training_steps=len(train_loader) * num_epochs
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
# ========================
|
| 196 |
+
# Training Loop
|
| 197 |
+
# ========================
|
| 198 |
+
model.train()
|
| 199 |
+
avg_loss = 0
|
| 200 |
+
|
| 201 |
+
for epoch in range(num_epochs):
|
| 202 |
+
total_loss = 0
|
| 203 |
+
|
| 204 |
+
for step, batch in enumerate(tqdm(train_loader)):
|
| 205 |
+
input_ids = batch['input_ids'].to(device)
|
| 206 |
+
attention_mask = batch['attention_mask'].to(device)
|
| 207 |
+
labels = batch['labels'].to(device)
|
| 208 |
+
|
| 209 |
+
outputs = model(input_ids, attention_mask)
|
| 210 |
+
loss = model.module.qakp_loss(outputs, labels, input_ids) if hasattr(model, 'module') else model.qakp_loss(outputs, labels, input_ids)
|
| 211 |
+
|
| 212 |
+
loss.backward()
|
| 213 |
+
|
| 214 |
+
if (step + 1) % gradient_accum_steps == 0:
|
| 215 |
+
optimizer.step()
|
| 216 |
+
scheduler.step()
|
| 217 |
+
optimizer.zero_grad()
|
| 218 |
+
|
| 219 |
+
total_loss += loss.item()
|
| 220 |
+
|
| 221 |
+
avg_loss = total_loss / len(train_loader)
|
| 222 |
+
print(f"Epoch {epoch+1}/{num_epochs} | Avg Loss: {avg_loss:.4f}")
|
| 223 |
+
|
| 224 |
+
# ========================
|
| 225 |
+
# Evaluation Loop
|
| 226 |
+
# ========================
|
| 227 |
+
model.eval()
|
| 228 |
+
correct = total = 0
|
| 229 |
+
|
| 230 |
+
with torch.no_grad():
|
| 231 |
+
for batch in tqdm(test_loader):
|
| 232 |
+
input_ids = batch['input_ids'].to(device)
|
| 233 |
+
attention_mask = batch['attention_mask'].to(device)
|
| 234 |
+
labels = batch['labels'].to(device)
|
| 235 |
+
|
| 236 |
+
outputs = model(input_ids, attention_mask)
|
| 237 |
+
preds = outputs.argmax(dim=-1)
|
| 238 |
+
|
| 239 |
+
correct += (preds == labels).sum().item()
|
| 240 |
+
total += labels.size(0)
|
| 241 |
+
|
| 242 |
+
final_accuracy = 100 * correct / total
|
| 243 |
+
print(f"Final Accuracy: {final_accuracy:.2f}%")
|
| 244 |
+
|
| 245 |
+
return {
|
| 246 |
+
'accuracy': final_accuracy,
|
| 247 |
+
'average_loss': avg_loss
|
| 248 |
+
}
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers
|
| 3 |
+
scikit-learn
|
| 4 |
+
tqdm
|
| 5 |
+
numpy
|
| 6 |
+
datasets
|