# ================================================ # GEM Model Trainer & Evaluator - Callable Version # ================================================ import torch import torch.quantization from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification, get_linear_schedule_with_warmup from sklearn.cluster import MiniBatchKMeans from torch.utils.data import DataLoader import torch.nn as nn import torch.nn.functional as F from tqdm import tqdm import numpy as np def run_gem_pipeline( dataset, model_name="bert-base-uncased", num_classes=77, num_epochs=3, batch_size=16, learning_rate=2e-5, max_seq_length=128, gradient_accum_steps=2, cluster_size=256, threshold=0.65 ): """ Runs the GEM model training & evaluation pipeline on a custom dataset. Args: dataset: HuggingFace DatasetDict or custom dataset (must have 'train' and 'test'). model_name: Name of the transformer model. num_classes: Number of output classes. num_epochs: Training epochs. batch_size: Batch size for dataloaders. learning_rate: Learning rate for optimizer. max_seq_length: Max sequence length for tokenizer. gradient_accum_steps: Gradient accumulation steps. cluster_size: Number of clusters for routing. threshold: Routing threshold. Returns: final_accuracy: Final evaluation accuracy on test set. avg_loss: Average training loss. """ # ======================== # Config # ======================== device = torch.device("cuda" if torch.cuda.is_available() else "cpu") hidden_size = 768 num_heads = 12 # ======================== # Tokenizer & Dataloaders # ======================== tokenizer = AutoTokenizer.from_pretrained(model_name) def tokenize_fn(examples): return tokenizer( examples['text'], padding='max_length', truncation=True, max_length=max_seq_length ) dataset = dataset.map(tokenize_fn, batched=True) def collate_fn(batch): return { 'input_ids': torch.stack([torch.tensor(x['input_ids']) for x in batch]), 'attention_mask': torch.stack([torch.tensor(x['attention_mask']) for x in batch]), 'labels': torch.tensor([x['label'] for x in batch]) } train_loader = DataLoader( dataset['train'], batch_size=batch_size, shuffle=True, collate_fn=collate_fn ) test_loader = DataLoader( dataset['test'], batch_size=batch_size, collate_fn=collate_fn ) # ======================== # GEM Model (Modular) # ======================== class QuantizedBERT(nn.Module): def __init__(self): super().__init__() self.bert = AutoModel.from_pretrained(model_name) self.quant = torch.quantization.QuantStub() self.dequant = torch.quantization.DeQuantStub() def forward(self, input_ids, attention_mask=None): outputs = self.bert(input_ids, attention_mask=attention_mask) return self.dequant(self.quant(outputs.last_hidden_state)) class TokenRouter(nn.Module): def __init__(self): super().__init__() self.clusterer = MiniBatchKMeans(n_clusters=cluster_size) self.W_r = nn.Parameter(torch.randn(num_classes, hidden_size)) self.threshold = threshold def forward(self, x): cluster_input = x.detach().cpu().numpy().reshape(-1, x.shape[-1]) cluster_ids = self.clusterer.fit_predict(cluster_input) cluster_ids = torch.tensor(cluster_ids, device=device).reshape(x.shape[:2]) domain_logits = torch.einsum('bsh,nh->bsn', x, self.W_r.to(x.device)) domain_probs = F.softmax(domain_logits, dim=-1) routing_mask = (domain_probs.max(-1).values > self.threshold).long() return domain_probs, routing_mask, cluster_ids class SCAR(nn.Module): def __init__(self): super().__init__() self.num_heads = num_heads self.head_dim = hidden_size // num_heads self.qkv = nn.Linear(hidden_size, 3 * hidden_size) self.out = nn.Linear(hidden_size, hidden_size) def create_mask(self, cluster_ids, routing_mask): cluster_mask = (cluster_ids.unsqueeze(-1) == cluster_ids.unsqueeze(-2)) domain_mask = (routing_mask.unsqueeze(-1) == routing_mask.unsqueeze(-2)) return cluster_mask | domain_mask def forward(self, x, cluster_ids, routing_mask): B, N, _ = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] attn = (q @ k.transpose(-2, -1)) / np.sqrt(self.head_dim) mask = self.create_mask(cluster_ids, routing_mask).unsqueeze(1) attn = attn.masked_fill(~mask, -1e9) attn = F.softmax(attn, dim=-1) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) return self.out(x) class GEM(nn.Module): def __init__(self): super().__init__() self.bert = QuantizedBERT() self.router = TokenRouter() self.scar = SCAR() self.classifier = nn.Linear(hidden_size, num_classes) self.teacher = AutoModelForSequenceClassification.from_pretrained( model_name, num_labels=num_classes ).eval().to(device).requires_grad_(False) def forward(self, input_ids, attention_mask=None): x = self.bert(input_ids, attention_mask) domain_probs, routing_mask, cluster_ids = self.router(x) x = self.scar(x, cluster_ids, routing_mask) return self.classifier(x[:, 0, :]) def qakp_loss(self, outputs, labels, input_ids): task_loss = F.cross_entropy(outputs, labels) quant_error = F.mse_loss(self.bert.quant(self.bert.dequant(outputs)), outputs) with torch.no_grad(): teacher_logits = self.teacher(input_ids).logits kd_loss = F.kl_div( F.log_softmax(outputs, dim=-1), F.softmax(teacher_logits, dim=-1), reduction='batchmean' ) return task_loss + 0.3 * quant_error + 0.7 * kd_loss # ======================== # Training Setup # ======================== model = GEM().to(device) if torch.cuda.device_count() > 1: model = nn.DataParallel(model, device_ids=list(range(torch.cuda.device_count()))) optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=100, num_training_steps=len(train_loader) * num_epochs ) # ======================== # Training Loop # ======================== model.train() avg_loss = 0 for epoch in range(num_epochs): total_loss = 0 for step, batch in enumerate(tqdm(train_loader)): input_ids = batch['input_ids'].to(device) attention_mask = batch['attention_mask'].to(device) labels = batch['labels'].to(device) outputs = model(input_ids, attention_mask) loss = model.module.qakp_loss(outputs, labels, input_ids) if hasattr(model, 'module') else model.qakp_loss(outputs, labels, input_ids) loss.backward() if (step + 1) % gradient_accum_steps == 0: optimizer.step() scheduler.step() optimizer.zero_grad() total_loss += loss.item() avg_loss = total_loss / len(train_loader) print(f"Epoch {epoch+1}/{num_epochs} | Avg Loss: {avg_loss:.4f}") # ======================== # Evaluation Loop # ======================== model.eval() correct = total = 0 with torch.no_grad(): for batch in tqdm(test_loader): input_ids = batch['input_ids'].to(device) attention_mask = batch['attention_mask'].to(device) labels = batch['labels'].to(device) outputs = model(input_ids, attention_mask) preds = outputs.argmax(dim=-1) correct += (preds == labels).sum().item() total += labels.size(0) final_accuracy = 100 * correct / total print(f"Final Accuracy: {final_accuracy:.2f}%") return { 'accuracy': final_accuracy, 'average_loss': avg_loss }