import os import glob import pandas as pd import pyarrow as pa import pyarrow.parquet as pq from tqdm import tqdm import cv2 as cv import argparse def images_to_parquet_sharded(image_dir, output_path, output_prefix="data_shard", shard_size_mb=100): """ Converts a folder of images into multiple Parquet shard files (~shard_size_mb each). Args: image_dir (str): Path to dataset folder. If images are grouped in subfolders, the folder name will be used as label. output_path (str): Path to processed dataset folder. output_prefix (str): Prefix for output parquet files (e.g., "data_shard"). shard_size_mb (int): Approximate shard size in MB. """ shard_size_bytes = shard_size_mb * 1024 * 1024 shard_index = 0 records = [] all_images_count = 0 total_written = 0 image_paths = glob.glob(os.path.join(image_dir, "**", "*.*"), recursive=True) for path in tqdm(image_paths, desc="Packing images"): ext = os.path.splitext(path)[1].lower() if ext not in [".jpg", ".jpeg", ".png", ".bmp", ".gif", ".webp"]: continue label = os.path.basename(os.path.dirname(path)) img_bytes = cv.imread(path) img_bytes = cv.imencode('.png', img_bytes)[1].tobytes() records.append({"image": img_bytes, "label": label, "filename": os.path.basename(path)}) total_written += len(img_bytes) # When current shard size exceeds limit, flush to disk if total_written >= shard_size_bytes: df = pd.DataFrame(records) table = pa.Table.from_pandas(df) out_path = os.path.join(output_path, f"{output_prefix}-{shard_index:05d}.parquet") pq.write_table(table, out_path) all_images_count += len(records) # Reset for next shard shard_index += 1 records = [] total_written = 0 # Write leftover records if records: df = pd.DataFrame(records) table = pa.Table.from_pandas(df) out_path = os.path.join(output_path, f"{output_prefix}-{shard_index:05d}.parquet") pq.write_table(table, out_path) all_images_count += len(records) print(f"✅ Wrote {all_images_count} images to {output_path}") if __name__ == "__main__": # Create an ArgumentParser object parser = argparse.ArgumentParser( description="This script takes an images folder and convert them into parquet files." ) # Add arguments parser.add_argument( "--output", "-o", type=str, required=True, help="Output path for the resulting dataset.", ) parser.add_argument( "--output_prefix", "-op", type=str, required=False, default="data_shard", help="Output prefix for the resulting dataset.", ) parser.add_argument( "--input", "-i", type=str, required=True, help="Input path for the dataset to convert.", ) parser.add_argument( "--parquet_shard_size_mb", "-ps", type=int, default=100, required=False, help="Size of the parquet shard in MB.", ) args = parser.parse_args() # Example usage images_to_parquet_sharded(args.input, args.output, output_prefix=args.output_prefix, shard_size_mb=args.parquet_shard_size_mb)