File size: 1,752 Bytes
7540774
 
 
 
 
 
 
 
09b92bc
 
 
 
 
 
 
 
 
 
 
 
 
7540774
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e977463
7540774
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
---
license: mit
task_categories:
  - text-generation
tags:
  - biology
  - genomics
  - long-context
configs:
  - config_name: bacteria
    data_files:
      - split: test
        path: bacteria/test.parquet
  - config_name: eukaryote
    data_files:
      - split: test
        path: eukaryote/test.parquet
  - config_name: others
    data_files:
      - split: test
        path: others/test.parquet
---

# Next K-mer Prediction

## Abouts
The Next K-mer Prediction task is a zero-shot evaluation method introduced in the **GENERator** paper to assess the quality of pretrained models. It involves inputting a sequence segment into the model and having it predict the next K base pairs. The predicted sequence is then compared to the actual sequence to assess accuracy.
* **Sequence**: The input sequence has a maximum length of 96k base pairs (bp). You can control the number of input tokens by applying **left** truncation.  
* **Label**: The next 128 bp immediately following the end of the input sequence.  

Note: Prediction time may increase significantly for longer input sequences. It is strongly recommended to begin testing with a smaller number of input tokens to optimize performance.  

## How to use

```python
from datasets import load_dataset

datasets = load_dataset("GenerTeam/next-kmer-prediction", "eukaryote") # or "bacteria" or "others"
```

## Citation

```bibtex
@misc{wu2025generator,
    title={GENERator: A Long-Context Generative Genomic Foundation Model},
    author={Wei Wu and Qiuyi Li and Mingyang Li and Kun Fu and Fuli Feng and Jieping Ye and Hui Xiong and Zheng Wang},
    year={2025},
    eprint={2502.07272},
    archivePrefix={arXiv},
    primaryClass={cs.CL},
    url={https://arxiv.org/abs/2502.07272},
}
```