Datasets:
File size: 6,429 Bytes
d6dd84c afea2c9 553d369 d6dd84c 2788d50 d6dd84c 4209476 6a14e5f 4209476 d6dd84c 7e2f593 d6dd84c d974eb1 d6dd84c be5e0d0 d6dd84c be5e0d0 d6dd84c d2126e1 c411610 d6dd84c df05f50 c411610 d2126e1 d6dd84c e82061a d6dd84c d2126e1 d6dd84c d2126e1 6a14e5f d2126e1 d6dd84c d974eb1 d6dd84c 72bc338 d6dd84c 1c527c8 d6dd84c d974eb1 1c527c8 d6dd84c d974eb1 afea2c9 d974eb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import os
import ast
import math
import datasets
import pandas as pd
from pprint import pprint
_CITATION = """
@inproceedings{sarti-etal-2022-divemt,
title = "{D}iv{EMT}: Neural Machine Translation Post-Editing Effort Across Typologically Diverse Languages",
author = "Sarti, Gabriele and Bisazza, Arianna and Guerberof Arenas, Ana and Toral, Antonio",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.532",
pages = "7795--7816",
}
"""
_DESCRIPTION = """\
DivEMT is the first publicly available post-editing study of Neural Machine Translation (NMT) over a typologically diverse set of target languages. Using a strictly controlled setup, 18 professional translators were instructed to translate or post-edit the same set of English documents into Arabic, Dutch, Italian, Turkish, Ukrainian, and Vietnamese. During the process, their edits, keystrokes, editing times, pauses, and perceived effort were logged, enabling an in-depth, cross-lingual evaluation of NMT quality and its post-editing process.
"""
_HOMEPAGE = "https://github.com/gsarti/divemt"
_LICENSE = "GNU General Public License v3.0"
_ROOT_PATH = "https://huggingface.co/datasets/GroNLP/divemt/resolve/main"
_PATHS = {
"main": os.path.join(_ROOT_PATH, "main.tsv"),
"warmup": os.path.join(_ROOT_PATH, "warmup.tsv"),
}
_ALL_FIELDS = ['unit_id', 'flores_id', 'item_id', 'subject_id', 'lang_id', 'doc_id',
'task_type', 'translation_type', 'src_len_chr', 'mt_len_chr', 'tgt_len_chr',
'src_len_wrd', 'mt_len_wrd', 'tgt_len_wrd', 'edit_time', 'k_total',
'k_letter', 'k_digit', 'k_white', 'k_symbol', 'k_nav', 'k_erase',
'k_copy', 'k_cut', 'k_paste', 'k_do', 'n_pause_geq_300',
'len_pause_geq_300', 'n_pause_geq_1000', 'len_pause_geq_1000',
'event_time', 'num_annotations', 'last_modification_time', 'n_insert',
'n_delete', 'n_substitute', 'n_shift', 'tot_shifted_words', 'tot_edits',
'hter', 'cer', 'bleu', 'chrf', 'time_s', 'time_m',
'time_h', 'time_per_char', 'time_per_word', 'key_per_char',
'words_per_hour', 'words_per_minute', 'per_subject_visit_order',
'src_text', 'mt_text', 'tgt_text', 'aligned_edit', 'src_tokens', 'src_annotations',
'mt_tokens', 'mt_annotations', 'tgt_tokens', 'tgt_annotations', 'src_wmt22_qe', 'mt_wmt22_qe'
]
_FLOAT_FIELDS = ["edit_time", "bleu", "chrf", "hter", "n_insert", "n_delete", "n_substitute",
"n_shift", "time_s", "time_m", "time_h", 'time_per_char', 'time_per_word', 'key_per_char',
'words_per_hour', 'words_per_minute', 'tot_shifted_words', 'tot_edits', "mt_len_chr",
"mt_len_wrd", "cer"
]
_STR_FIELDS = ["unit_id", "item_id", "subject_id", "lang_id", "task_type", "translation_type",
"src_text", "mt_text", "tgt_text", "aligned_edit"
]
_STR_SEQ_FIELDS = ['src_tokens', 'mt_tokens', 'tgt_tokens', 'src_wmt22_qe', 'mt_wmt22_qe']
_LANG_ANNOTATIONS_FIELDS = ['src_annotations', 'mt_annotations', 'tgt_annotations']
class DivEMTConfig(datasets.BuilderConfig):
"""BuilderConfig for the DivEMT Dataset."""
def __init__(
self,
features,
**kwargs,
):
"""
Args:
features: `list[string]`, list of the features that will appear in the
feature dict. Should not include "label".
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
self.features = features
class DivEMT(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
DivEMTConfig(
name=name,
features=_ALL_FIELDS,
)
for name in ["warmup", "main"]
]
DEFAULT_CONFIG_NAME = "main"
def _info(self):
features = {feature: datasets.Value("int32") for feature in self.config.features}
for field in _ALL_FIELDS:
if field in self.config.features:
if field in _STR_FIELDS:
features[field] = datasets.Value("string")
if field in _FLOAT_FIELDS:
features[field] = datasets.Value("float32")
if field in _STR_SEQ_FIELDS:
features[field] = datasets.Sequence(datasets.Value("string"))
if field in _LANG_ANNOTATIONS_FIELDS:
features[field] = datasets.features.Sequence(
{
"lemma": datasets.Value("string"),
"upos": datasets.Value("string"),
"feats": datasets.Value("string"),
"head": datasets.Value("string"),
"deprel": datasets.Value("string"),
"start_char": datasets.Value("int32"),
"end_char": datasets.Value("int32"),
"ner": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(features),
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
dl_dir = dl_manager.download_and_extract(_PATHS[self.config.name])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": dl_dir,
"features": self.config.features,
},
)
]
def _generate_examples(self, filepath: str, features):
"""Yields examples as (key, example) tuples."""
data = pd.read_csv(filepath, sep="\t")
data = data[features]
for id_, row in data.iterrows():
row_dic = row.to_dict()
for field in _STR_SEQ_FIELDS + _LANG_ANNOTATIONS_FIELDS:
if isinstance(row_dic[field], float) and math.isnan(row_dic[field]):
row_dic[field] = []
else:
row_dic[field] = ast.literal_eval(row_dic[field])
yield id_, row_dic |