Datasets:
Tasks:
Token Classification
Formats:
parquet
Sub-tasks:
named-entity-recognition
Languages:
Arabic
Size:
10K - 100K
License:
File size: 2,798 Bytes
40a164d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
# Spoken-Arabic Named-Entity Dataset (Levantine NER v1.0)
A curated corpus of Levantine-Arabic sentences annotated for Named Entities, plus parallel dual-annotator files for assessing annotation noise.
Ideal for fine-tuning Arabic-BERT–style models on noisy, spoken data and testing cross-register robustness.
---
## 1 Corpus snapshot
| statistic | value |
|----------------------------------------|-------|
| Sentences (unique set) | **23 422** |
| Sentences incl. 2nd annotator (A + B) | **29 228** |
| Tokens (approx.) | ~290 k |
| Annotated entity spans | **17 589** |
| Avg. entities ∕ sentence | 0.75 |
| Annotators | Arzy · Rawan · Reem · Sabil · Wiam · Amir |
| Rounds | `round1` – `round5` (natural speech) + `round6` (synthetic news/MSA) |
| File format | JSON Lines (UTF-8) |
### Label inventory
| label | description | count |
|--------|-------------------------|------:|
| `GPE` | geopolitical entity | 4 601 |
| `PER` | person | 3 628 |
| `ORG` | organisation | 1 426 |
| `MISC` | misc. named item | 1 301 |
| `FAC` | facility | 947 |
| `TIMEX`| temporal expression | 926 |
| `DUC` | product/brand | 711 |
| `EVE` | event | 487 |
| `LOC` | (non-GPE) location | 467 |
| `ANG` | angle/measure | 322 |
| `WOA` | work of art | 292 |
| `TTL` | title/honorific | 227 |
---
## 2 File list
| file | lines | purpose |
|------|------:|---------|
| **`unique_sentences.jsonl`** | 23 422 | canonical training/dev/test pool (one Levantine sentence per line) |
| **`iaa_A.jsonl`** | 5 806 | first annotator in each inter-annotator pair (not in `unique`) |
| **`iaa_B.jsonl`** | 5 806 | second annotator for the same sentences (aligned 1-to-1 with `iaa_A`) |
| `sentences.parquet` / `spans.parquet` | 52 274 / 17 589 | columnar versions for quick Pandas analysis (optional) |
### Record schema (`unique_sentences.jsonl`)
```jsonc
{
"doc_id" : 137,
"doc_name" : "22صدى-الصوت22",
"sent_id" : 11,
"orig_ID" : "29891",
"round" : "round3", // round1-5 natural, round6 synthetic
"annotator" : "Rawan",
"text" : "جيب جوال أو أي اشي ضو هيك",
"source_type": "social_videos",
"spans": [
{ "start": 4, "end": 8, "label": "DUC" }
],
// only for round6
"msa": {
"text" : "<parallel MSA sentence>",
"spans" : [{ "start": 5, "end": 16, "label": "LOC" }]
},
// provenance (optional)
"url" : "https://…",
"date" : "2019-05-02 18:30:44"
}
|