Datasets:

Modalities:
Text
Formats:
json
Languages:
Chinese
ArXiv:
Libraries:
Datasets
pandas
License:
nielsr HF Staff commited on
Commit
631763c
·
verified ·
1 Parent(s): e220fe2

Improve dataset card: Add text-classification task and sample usage

Browse files

This pull request enhances the dataset card by:

1. Adding `text-classification` to the `task_categories` metadata, reflecting the core nature of many sub-tasks within BizFinBench.
2. Including a brief "Sample Usage" section in the README to guide users on how to utilize the dataset and provided scripts.

These additions improve the dataset's discoverability and usability on the Hugging Face Hub.

Files changed (1) hide show
  1. README.md +166 -49
README.md CHANGED
@@ -1,60 +1,54 @@
1
  ---
2
- license: cc-by-4.0
3
  language:
4
  - zh
5
- tags:
6
- - finance
7
- pretty_name: BizFinBench
8
  size_categories:
9
  - 10K<n<100K
10
  task_categories:
11
  - question-answering
 
 
 
 
12
  configs:
13
- - config_name: Anomalous_Event_Attribution
14
- data_files:
15
- - split: test
16
- path: Anomalous_Event_Attribution/*.jsonl
17
-
18
- - config_name: Emotion_Recognition
19
- data_files:
20
- - split: test
21
- path: Emotion_Recognition/*.jsonl
22
-
23
- - config_name: Financial_Data_Description
24
- data_files:
25
- - split: test
26
- path: Financial_Data_Description/*.jsonl
27
-
28
- - config_name: Financial_Knowledge_QA
29
- data_files:
30
- - split: test
31
- path: Financial_Knowledge_QA/*.jsonl
32
-
33
- - config_name: Financial_Named_Entity_Recognition
34
- data_files:
35
- - split: test
36
- path: Financial_Named_Entity_Recognition/*.jsonl
37
-
38
- - config_name: Financial_Numerical_Computation
39
- data_files:
40
- - split: test
41
- path: Financial_Numerical_Computation/*.jsonl
42
-
43
- - config_name: Financial_Time_Reasoning
44
- data_files:
45
- - split: test
46
- path: Financial_Time_Reasoning/*.jsonl
47
-
48
- - config_name: Financial_Tool_Usage
49
- data_files:
50
- - split: test
51
- path: Financial_Tool_Usage/*.jsonl
52
-
53
- - config_name: Stock_Price_Prediction
54
- data_files:
55
- - split: test
56
- path: Stock_Price_Prediction/*.jsonl
57
  ---
 
58
  # BizFinBench: A Business-Driven Real-World Financial Benchmark for Evaluating LLMs
59
 
60
  📖<a href="https://arxiv.org/abs/2505.19457">Paper</a> |🐙<a href="https://github.com/HiThink-Research/BizFinBench/">Github</a></h3>|🤗<a href="https://huggingface.co/datasets/HiThink-Research/BizFinBench">Huggingface</a></h3>
@@ -118,4 +112,127 @@ The models are evaluated across multiple tasks, with results color-coded to repr
118
  | DeepSeek-R1 (671B) | 80.36 | 🥇 64.04 | 🥉 75.00 | 81.96 | 🥇 91.44 | 98.41 | 39.67 | 55.13 | 🥇 71.46 | 🥈 73.05 |
119
  | QwQ-32B | 84.02 | 52.91 | 64.90 | 84.81 | 89.60 | 94.20 | 34.50 | 🥈 56.68 | 30.27 | 65.77 |
120
  | DeepSeek-R1-Distill-Qwen-14B | 71.33 | 44.35 | 16.95 | 81.96 | 85.52 | 92.81 | 39.50 | 50.20 | 52.76 | 59.49 |
121
- | DeepSeek-R1-Distill-Qwen-32B | 73.68 | 51.20 | 50.86 | 83.27 | 87.54 | 97.81 | 41.50 | 53.92 | 56.80 | 66.29 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
 
2
  language:
3
  - zh
4
+ license: cc-by-4.0
 
 
5
  size_categories:
6
  - 10K<n<100K
7
  task_categories:
8
  - question-answering
9
+ - text-classification
10
+ pretty_name: BizFinBench
11
+ tags:
12
+ - finance
13
  configs:
14
+ - config_name: Anomalous_Event_Attribution
15
+ data_files:
16
+ - split: test
17
+ path: Anomalous_Event_Attribution/*.jsonl
18
+ - config_name: Emotion_Recognition
19
+ data_files:
20
+ - split: test
21
+ path: Emotion_Recognition/*.jsonl
22
+ - config_name: Financial_Data_Description
23
+ data_files:
24
+ - split: test
25
+ path: Financial_Data_Description/*.jsonl
26
+ - config_name: Financial_Knowledge_QA
27
+ data_files:
28
+ - split: test
29
+ path: Financial_Knowledge_QA/*.jsonl
30
+ - config_name: Financial_Named_Entity_Recognition
31
+ data_files:
32
+ - split: test
33
+ path: Financial_Named_Entity_Recognition/*.jsonl
34
+ - config_name: Financial_Numerical_Computation
35
+ data_files:
36
+ - split: test
37
+ path: Financial_Numerical_Computation/*.jsonl
38
+ - config_name: Financial_Time_Reasoning
39
+ data_files:
40
+ - split: test
41
+ path: Financial_Time_Reasoning/*.jsonl
42
+ - config_name: Financial_Tool_Usage
43
+ data_files:
44
+ - split: test
45
+ path: Financial_Tool_Usage/*.jsonl
46
+ - config_name: Stock_Price_Prediction
47
+ data_files:
48
+ - split: test
49
+ path: Stock_Price_Prediction/*.jsonl
 
 
 
 
 
 
 
 
50
  ---
51
+
52
  # BizFinBench: A Business-Driven Real-World Financial Benchmark for Evaluating LLMs
53
 
54
  📖<a href="https://arxiv.org/abs/2505.19457">Paper</a> |🐙<a href="https://github.com/HiThink-Research/BizFinBench/">Github</a></h3>|🤗<a href="https://huggingface.co/datasets/HiThink-Research/BizFinBench">Huggingface</a></h3>
 
112
  | DeepSeek-R1 (671B) | 80.36 | 🥇 64.04 | 🥉 75.00 | 81.96 | 🥇 91.44 | 98.41 | 39.67 | 55.13 | 🥇 71.46 | 🥈 73.05 |
113
  | QwQ-32B | 84.02 | 52.91 | 64.90 | 84.81 | 89.60 | 94.20 | 34.50 | 🥈 56.68 | 30.27 | 65.77 |
114
  | DeepSeek-R1-Distill-Qwen-14B | 71.33 | 44.35 | 16.95 | 81.96 | 85.52 | 92.81 | 39.50 | 50.20 | 52.76 | 59.49 |
115
+ | DeepSeek-R1-Distill-Qwen-32B | 73.68 | 51.20 | 50.86 | 83.27 | 87.54 | 97.81 | 41.50 | 53.92 | 56.80 | 66.29 |
116
+
117
+ ## 🛠️ Usage
118
+
119
+ ### Quick Start – Evaluate a Local Model
120
+
121
+ ```sh
122
+ export MODEL_PATH=model/Qwen2.5-0.5B # Path to the model to be evaluated
123
+ export REMOTE_MODEL_PORT=16668
124
+ export REMOTE_MODEL_URL=http://127.0.0.1:${REMOTE_MODEL_PORT}/model
125
+ export MODEL_NAME=Qwen2.5-0.5B
126
+ export PROMPT_TYPE=chat_template # Hithink llama3 llama2 none qwen chat_template; chat_template is recommended
127
+
128
+ # First start the model as a service
129
+ python inference/predict_multi_gpu.py \
130
+ --model ${MODEL_PATH} \
131
+ --server_port ${REMOTE_MODEL_PORT} \
132
+ --prompt ${PROMPT_TYPE} \
133
+ --preprocess preprocess \
134
+ --run_forever \
135
+ --max_new_tokens 4096 \
136
+ --tensor_parallel ${TENSOR_PARALLEL} &
137
+
138
+ # Pass in the config file path to start evaluation
139
+ python run.py --config config/offical/eval_fin_eval_diamond.yaml --model_name ${MODEL_NAME}
140
+ ```
141
+
142
+ ### Quick Start – Evaluate a Local Model and Score with a Judge Model
143
+
144
+ ```sh
145
+ export MODEL_PATH=model/Qwen2.5-0.5B # Path to the model to be evaluated
146
+ export REMOTE_MODEL_PORT=16668
147
+ export REMOTE_MODEL_URL=http://127.0.0.1:${REMOTE_MODEL_PORT}/model
148
+ export MODEL_NAME=Qwen2.5-0.5B
149
+ export PROMPT_TYPE=chat_template # llama3 llama2 none qwen chat_template; chat_template is recommended
150
+
151
+ # First start the model as a service
152
+ python inference/predict_multi_gpu.py \
153
+ --model ${MODEL_PATH} \
154
+ --server_port ${REMOTE_MODEL_PORT} \
155
+ --prompt ${PROMPT_TYPE} \
156
+ --preprocess preprocess \
157
+ --run_forever \
158
+ --max_new_tokens 4096 \
159
+ --tensor_parallel ${TENSOR_PARALLEL} \
160
+ --low_vram &
161
+
162
+ # Start the judge model
163
+ export JUDGE_MODEL_PATH=/mnt/data/llm/models/base/Qwen2.5-7B
164
+ export JUDGE_TENSOR_PARALLEL=1
165
+ export JUDGE_MODEL_PORT=16667
166
+ python inference/predict_multi_gpu.py \
167
+ --model ${JUDGE_MODEL_PATH} \
168
+ --server_port ${JUDGE_MODEL_PORT} \
169
+ --prompt chat_template \
170
+ --preprocess preprocess \
171
+ --run_forever \
172
+ --manual_start \
173
+ --max_new_tokens 4096 \
174
+ --tensor_parallel ${JUDGE_TENSOR_PARALLEL} \
175
+ --low_vram &
176
+
177
+ # Pass in the config file path to start evaluation
178
+ python run.py --config "config/offical/eval_fin_eval.yaml" --model_name ${MODEL_NAME}
179
+ ```
180
+
181
+ > **Note**: Add the `--manual_start` argument when launching the judge model, because the judge must wait until the main model finishes inference before starting (this is handled automatically by the `maybe_start_judge_model` function in `run.py`).
182
+
183
+
184
+ ## ✒️Results
185
+ The models are evaluated across multiple tasks, with results color-coded to represent the top three performers for each task:
186
+ - 🥇 indicates the top-performing model.
187
+ - 🥈 represents the second-best result.
188
+ - 🥉 denotes the third-best performance.
189
+
190
+ | Model | AEA | FNC | FTR | FTU | FQA | FDD | ER | SP | FNER | Average |
191
+ | ---------------------------- | ------- | ------- | ------- | ------- | ------- | ------- | ------- | ------- | ------- | ------- |
192
+ | **Proprietary LLMs** | | | | | | | | | | |
193
+ | ChatGPT-o3 | 🥈 86.23 | 61.30 | 🥈 75.36 | 🥇 89.15 | 🥈 91.25 | 🥉 98.55 | 🥉 44.48 | 53.27 | 65.13 | 🥇 73.86 |
194
+ | ChatGPT-o4-mini | 🥉 85.62 | 60.10 | 71.23 | 74.40 | 90.27 | 95.73 | 🥇 47.67 | 52.32 | 64.24 | 71.29 |
195
+ | GPT-4o | 79.42 | 56.51 | 🥇 76.20 | 82.37 | 87.79 | 🥇 98.84 | 🥈 45.33 | 54.33 | 65.37 | 🥉 71.80 |
196
+ | Gemini-2.0-Flash | 🥇 86.94 | 🥉 62.67 | 73.97 | 82.55 | 90.29 | 🥈 98.62 | 22.17 | 🥉 56.14 | 54.43 | 69.75 |
197
+ | Claude-3.5-Sonnet | 84.68 | 🥈 63.18 | 42.81 | 🥈 88.05 | 87.35 | 96.85 | 16.67 | 47.60 | 63.09 | 65.59 |
198
+ | **Open Source LLMs** | | | | | | | | | | |
199
+ | Qwen2.5-7B-Instruct | 73.87 | 32.88 | 39.38 | 79.03 | 83.34 | 78.93 | 37.50 | 51.91 | 30.31 | 56.35 |
200
+ | Qwen2.5-72B-Instruct | 69.27 | 54.28 | 70.72 | 85.29 | 87.79 | 97.43 | 35.33 | 55.13 | 54.02 | 67.70 |
201
+ | Qwen2.5-VL-3B | 53.85 | 15.92 | 17.29 | 8.95 | 81.60 | 59.44 | 39.50 | 52.49 | 21.57 | 38.96 |
202
+ | Qwen2.5-VL-7B | 73.87 | 32.71 | 40.24 | 77.85 | 83.94 | 77.41 | 38.83 | 51.91 | 33.40 | 56.68 |
203
+ | Qwen2.5-VL-14B | 37.12 | 41.44 | 53.08 | 82.07 | 84.23 | 7.97 | 37.33 | 54.93 | 47.47 | 49.52 |
204
+ | Qwen2.5-VL-32B | 76.79 | 50.00 | 62.16 | 83.57 | 85.30 | 95.95 | 40.50 | 54.93 | 🥉 68.36 | 68.62 |
205
+ | Qwen2.5-VL-72B | 69.55 | 54.11 | 69.86 | 85.18 | 87.37 | 97.34 | 35.00 | 54.94 | 54.41 | 67.53 |
206
+ | Qwen3-1.7B | 77.40 | 35.80 | 33.40 | 75.82 | 73.81 | 78.62 | 22.40 | 48.53 | 11.23 | 50.78 |
207
+ | Qwen3-4B | 83.60 | 47.40 | 50.00 | 78.19 | 82.24 | 80.16 | 42.20 | 50.51 | 25.19 | 59.94 |
208
+ | Qwen3-14B | 84.20 | 58.20 | 65.80 | 82.19 | 84.12 | 92.91 | 33.00 | 52.31 | 50.70 | 67.05 |
209
+ | Qwen3-32B | 83.80 | 59.60 | 64.60 | 85.12 | 85.43 | 95.37 | 39.00 | 52.26 | 49.19 | 68.26 |
210
+ | Xuanyuan3-70B | 12.14 | 19.69 | 15.41 | 80.89 | 86.51 | 83.90 | 29.83 | 52.62 | 37.33 | 46.48 |
211
+ | Llama-3.1-8B-Instruct | 73.12 | 22.09 | 2.91 | 77.42 | 76.18 | 69.09 | 29.00 | 54.21 | 36.56 | 48.95 |
212
+ | Llama-3.1-70B-Instruct | 16.26 | 34.25 | 56.34 | 80.64 | 79.97 | 86.90 | 33.33 | 🥇 62.16 | 45.95 | 55.09 |
213
+ | Llama 4 Scout | 73.60 | 45.80 | 44.20 | 85.02 | 85.21 | 92.32 | 25.60 | 55.76 | 43.00 | 61.17 |
214
+ | DeepSeek-V3 (671B) | 74.34 | 61.82 | 72.60 | 🥈 86.54 | 🥉 91.07 | 98.11 | 32.67 | 55.73 | 🥈 71.24 | 71.57 |
215
+ | DeepSeek-R1 (671B) | 80.36 | 🥇 64.04 | 🥉 75.00 | 81.96 | 🥇 91.44 | 98.41 | 39.67 | 55.13 | 🥇 71.46 | 🥈 73.05 |
216
+ | QwQ-32B | 84.02 | 52.91 | 64.90 | 84.81 | 89.60 | 94.20 | 34.50 | 🥈 56.68 | 30.27 | 65.77 |
217
+ | DeepSeek-R1-Distill-Qwen-14B | 71.33 | 44.35 | 16.95 | 81.96 | 85.52 | 92.81 | 39.50 | 50.20 | 52.76 | 59.49 |
218
+ | DeepSeek-R1-Distill-Qwen-32B | 73.68 | 51.20 | 50.86 | 83.27 | 87.54 | 97.81 | 41.50 | 53.92 | 56.80 | 66.29 |
219
+
220
+
221
+ ## 📚 Example
222
+ <img src="static/Anomalous Event Attribution.drawio.png" alt="Data Distribution">
223
+
224
+
225
+ ## ✒️Citation
226
+
227
+ ```
228
+ @article{lu2025bizfinbench,
229
+ title={BizFinBench: A Business-Driven Real-World Financial Benchmark for Evaluating LLMs},
230
+ author={Lu, Guilong and Guo, Xuntao and Zhang, Rongjunchen and Zhu, Wenqiao and Liu, Ji},
231
+ journal={arXiv preprint arXiv:2505.19457},
232
+ year={2025}
233
+ }
234
+ ```
235
+
236
+ ## 📄 License
237
+ ![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg) ![Data License](https://img.shields.io/badge/Data%20License-CC%20By%20NC%204.0-red.svg) **Usage and License Notices**: The data and code are intended and licensed for research use only.
238
+ License: Attribution-NonCommercial 4.0 International It should abide by the policy of OpenAI: https://openai.com/policies/terms-of-use