print statements
Browse files- SNLI-VE.py +13 -12
SNLI-VE.py
CHANGED
@@ -75,19 +75,19 @@ _FEATURES = datasets.Features(
|
|
75 |
class SNLIVE(datasets.GeneratorBasedBuilder):
|
76 |
"""SNLIVE."""
|
77 |
|
78 |
-
@property
|
79 |
-
def manual_download_instructions(self):
|
80 |
-
|
81 |
-
In order to get the flickr data on which SNLI-VE is built, You need to go to http://shannon.cs.illinois.edu/DenotationGraph/data/index.html,
|
82 |
-
and manually download the dataset ("Flickr 30k images."). Once it is completed,
|
83 |
-
a file named `flickr30k-images.tar.gz` will appear in your Downloads folder
|
84 |
-
or whichever folder your browser chooses to save files to.
|
85 |
-
Then, the dataset can be loaded using the following command `datasets.load_dataset("flickr30k", data_dir="<path/to/folder>")`.
|
86 |
-
"""
|
87 |
DEFAULT_CONFIG_NAME = "Default"
|
88 |
-
|
89 |
def _info(self):
|
90 |
-
|
91 |
return datasets.DatasetInfo(
|
92 |
description=_DESCRIPTION,
|
93 |
features=_FEATURES,
|
@@ -97,7 +97,7 @@ class SNLIVE(datasets.GeneratorBasedBuilder):
|
|
97 |
)
|
98 |
|
99 |
def _split_generators(self, dl_manager):
|
100 |
-
|
101 |
urls = {
|
102 |
"Default": {
|
103 |
"train": os.path.join(_SNLI_VE_URL_BASE, _SNLI_VE_SPLITS["train"]),
|
@@ -134,6 +134,7 @@ class SNLIVE(datasets.GeneratorBasedBuilder):
|
|
134 |
|
135 |
def _generate_examples(self, snli_ve_annotation_path, images_path):
|
136 |
counter = 0
|
|
|
137 |
print(snli_ve_annotation_path)
|
138 |
with open(snli_ve_annotation_path, 'r') as json_file:
|
139 |
for elem in json_file:
|
|
|
75 |
class SNLIVE(datasets.GeneratorBasedBuilder):
|
76 |
"""SNLIVE."""
|
77 |
|
78 |
+
# @property
|
79 |
+
# def manual_download_instructions(self):
|
80 |
+
# return """\
|
81 |
+
# In order to get the flickr data on which SNLI-VE is built, You need to go to http://shannon.cs.illinois.edu/DenotationGraph/data/index.html,
|
82 |
+
# and manually download the dataset ("Flickr 30k images."). Once it is completed,
|
83 |
+
# a file named `flickr30k-images.tar.gz` will appear in your Downloads folder
|
84 |
+
# or whichever folder your browser chooses to save files to.
|
85 |
+
# Then, the dataset can be loaded using the following command `datasets.load_dataset("flickr30k", data_dir="<path/to/folder>")`.
|
86 |
+
# """
|
87 |
DEFAULT_CONFIG_NAME = "Default"
|
88 |
+
print("HER0")
|
89 |
def _info(self):
|
90 |
+
print("HERE1")
|
91 |
return datasets.DatasetInfo(
|
92 |
description=_DESCRIPTION,
|
93 |
features=_FEATURES,
|
|
|
97 |
)
|
98 |
|
99 |
def _split_generators(self, dl_manager):
|
100 |
+
print("HERE2")
|
101 |
urls = {
|
102 |
"Default": {
|
103 |
"train": os.path.join(_SNLI_VE_URL_BASE, _SNLI_VE_SPLITS["train"]),
|
|
|
134 |
|
135 |
def _generate_examples(self, snli_ve_annotation_path, images_path):
|
136 |
counter = 0
|
137 |
+
print("HERE3")
|
138 |
print(snli_ve_annotation_path)
|
139 |
with open(snli_ve_annotation_path, 'r') as json_file:
|
140 |
for elem in json_file:
|