print statements
Browse files- SNLI-VE.py +13 -12
SNLI-VE.py
CHANGED
|
@@ -75,19 +75,19 @@ _FEATURES = datasets.Features(
|
|
| 75 |
class SNLIVE(datasets.GeneratorBasedBuilder):
|
| 76 |
"""SNLIVE."""
|
| 77 |
|
| 78 |
-
@property
|
| 79 |
-
def manual_download_instructions(self):
|
| 80 |
-
|
| 81 |
-
In order to get the flickr data on which SNLI-VE is built, You need to go to http://shannon.cs.illinois.edu/DenotationGraph/data/index.html,
|
| 82 |
-
and manually download the dataset ("Flickr 30k images."). Once it is completed,
|
| 83 |
-
a file named `flickr30k-images.tar.gz` will appear in your Downloads folder
|
| 84 |
-
or whichever folder your browser chooses to save files to.
|
| 85 |
-
Then, the dataset can be loaded using the following command `datasets.load_dataset("flickr30k", data_dir="<path/to/folder>")`.
|
| 86 |
-
"""
|
| 87 |
DEFAULT_CONFIG_NAME = "Default"
|
| 88 |
-
|
| 89 |
def _info(self):
|
| 90 |
-
|
| 91 |
return datasets.DatasetInfo(
|
| 92 |
description=_DESCRIPTION,
|
| 93 |
features=_FEATURES,
|
|
@@ -97,7 +97,7 @@ class SNLIVE(datasets.GeneratorBasedBuilder):
|
|
| 97 |
)
|
| 98 |
|
| 99 |
def _split_generators(self, dl_manager):
|
| 100 |
-
|
| 101 |
urls = {
|
| 102 |
"Default": {
|
| 103 |
"train": os.path.join(_SNLI_VE_URL_BASE, _SNLI_VE_SPLITS["train"]),
|
|
@@ -134,6 +134,7 @@ class SNLIVE(datasets.GeneratorBasedBuilder):
|
|
| 134 |
|
| 135 |
def _generate_examples(self, snli_ve_annotation_path, images_path):
|
| 136 |
counter = 0
|
|
|
|
| 137 |
print(snli_ve_annotation_path)
|
| 138 |
with open(snli_ve_annotation_path, 'r') as json_file:
|
| 139 |
for elem in json_file:
|
|
|
|
| 75 |
class SNLIVE(datasets.GeneratorBasedBuilder):
|
| 76 |
"""SNLIVE."""
|
| 77 |
|
| 78 |
+
# @property
|
| 79 |
+
# def manual_download_instructions(self):
|
| 80 |
+
# return """\
|
| 81 |
+
# In order to get the flickr data on which SNLI-VE is built, You need to go to http://shannon.cs.illinois.edu/DenotationGraph/data/index.html,
|
| 82 |
+
# and manually download the dataset ("Flickr 30k images."). Once it is completed,
|
| 83 |
+
# a file named `flickr30k-images.tar.gz` will appear in your Downloads folder
|
| 84 |
+
# or whichever folder your browser chooses to save files to.
|
| 85 |
+
# Then, the dataset can be loaded using the following command `datasets.load_dataset("flickr30k", data_dir="<path/to/folder>")`.
|
| 86 |
+
# """
|
| 87 |
DEFAULT_CONFIG_NAME = "Default"
|
| 88 |
+
print("HER0")
|
| 89 |
def _info(self):
|
| 90 |
+
print("HERE1")
|
| 91 |
return datasets.DatasetInfo(
|
| 92 |
description=_DESCRIPTION,
|
| 93 |
features=_FEATURES,
|
|
|
|
| 97 |
)
|
| 98 |
|
| 99 |
def _split_generators(self, dl_manager):
|
| 100 |
+
print("HERE2")
|
| 101 |
urls = {
|
| 102 |
"Default": {
|
| 103 |
"train": os.path.join(_SNLI_VE_URL_BASE, _SNLI_VE_SPLITS["train"]),
|
|
|
|
| 134 |
|
| 135 |
def _generate_examples(self, snli_ve_annotation_path, images_path):
|
| 136 |
counter = 0
|
| 137 |
+
print("HERE3")
|
| 138 |
print(snli_ve_annotation_path)
|
| 139 |
with open(snli_ve_annotation_path, 'r') as json_file:
|
| 140 |
for elem in json_file:
|