Datasets:
File size: 5,877 Bytes
1461bf9 f7eb135 1461bf9 f7eb135 5d67817 1461bf9 7d17ebf 1461bf9 e089888 2a22f4c 50eda48 237574f 50eda48 1461bf9 2a22f4c 1461bf9 e089888 1461bf9 e089888 1461bf9 6c9beeb 1461bf9 2a22f4c 1461bf9 6c9beeb 50eda48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
---
annotations_creators:
- crowdsourced
language_creators:
- found
language:
- en
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- extended|net-activities-captions
- original
task_categories:
- token-classification
- text-classification
task_ids:
- multi-class-classification
- named-entity-recognition
paperswithcode_id: limit
pretty_name: LiMiT
dataset_info:
features:
- name: id
dtype: int32
- name: sentence
dtype: string
- name: motion
dtype: string
- name: motion_entities
list:
- name: entity
dtype: string
- name: start_index
dtype: int32
splits:
- name: train
num_bytes: 3064208
num_examples: 23559
- name: test
num_bytes: 139742
num_examples: 1000
download_size: 4214925
dataset_size: 3203950
---
# Dataset Card for LiMiT
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** -
- **Repository:** [github](https://github.com/ilmgut/limit_dataset)
- **Paper:** [LiMiT: The Literal Motion in Text Dataset](https://www.aclweb.org/anthology/2020.findings-emnlp.88/)
- **Leaderboard:** N/A
- **Point of Contact:** [More Information Needed]
### Dataset Summary
Motion recognition is one of the basic cognitive capabilities of many life forms, yet identifying
motion of physical entities in natural language have not been explored extensively and empirically.
Literal-Motion-in-Text (LiMiT) dataset, is a large human-annotated collection of English text sentences
describing physical occurrence of motion, with annotated physical entities in motion.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The text in the dataset is in English (`en`).
## Dataset Structure
### Data Instances
Example of one instance in the dataset
```
{
"id": 0,
"motion": "yes",
"motion_entities": [
{
"entity": "little boy",
"start_index": 2
},
{
"entity": "ball",
"start_index": 30
}
],
"sentence": " A little boy holding a yellow ball walks by."
}
```
### Data Fields
- `id`: intger index of the example
- `motion`: indicates whether the sentence is literal motion i.e. describes the movement of a physical entity or not
- `motion_entities`: A `list` of `dicts` with following keys
- `entity`: the extracted entity in motion
- `start_index`: index in the sentence for the first char of the entity text
### Data Splits
The dataset is split into a `train`, and `test` split with the following sizes:
| | train | validation |
| ----- |------:|-----------:|
| Number of examples | 23559 | 1000 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
```
@inproceedings{manotas-etal-2020-limit,
title = "{L}i{M}i{T}: The Literal Motion in Text Dataset",
author = "Manotas, Irene and
Vo, Ngoc Phuoc An and
Sheinin, Vadim",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.findings-emnlp.88",
doi = "10.18653/v1/2020.findings-emnlp.88",
pages = "991--1000",
abstract = "Motion recognition is one of the basic cognitive capabilities of many life forms, yet identifying motion of physical entities in natural language have not been explored extensively and empirically. We present the Literal-Motion-in-Text (LiMiT) dataset, a large human-annotated collection of English text sentences describing physical occurrence of motion, with annotated physical entities in motion. We describe the annotation process for the dataset, analyze its scale and diversity, and report results of several baseline models. We also present future research directions and applications of the LiMiT dataset and share it publicly as a new resource for the research community.",
}
```
### Contributions
Thanks to [@patil-suraj](https://github.com/patil-suraj) for adding this dataset. |